some algebra review
On Exam 2 it was necessary to solve the equation:

$$
x^{4}=2 x^{2}
$$

The best way to do this is to express the equation as

$$
x^{4}-2 x^{2}=0
$$

Then factor LHS to get

$$
x^{2}(x+\sqrt{2})(x-\sqrt{2})=0
$$

and the only way this can be true is if one of the factors $x^{2}, x+\sqrt{2}$ or $\alpha-\sqrt{2}$ is 0 . This gives solution:

$$
x=0, x=-\sqrt{2} \text { or } x=\sqrt{2}
$$

An incorrect solution is

$$
x^{4}=2 x^{2} \Rightarrow x^{2}=2 \Rightarrow x= \pm \sqrt{2}
$$

(Clearly this is incorrect because $x=0$ is a solution to $x^{4}=2 x^{2}$,)
The mistake here occurs in writing

$$
x^{4}=2 x^{2} \Rightarrow x^{2}=2
$$

which is incorrect because dividing by x^{2} is illegitimate when $x=0$. This can be fixed by writing $x^{4}=2 x^{2} \Rightarrow x^{2}=2$ or $x=0$.
(and $x^{2}=2$ or $x=0 \Rightarrow x=-\sqrt{2}, x=\sqrt{2}$ or $x=0$.)

Sections $11.3-11.7$ are focused on:

BQ The Basic Question About Infinite Ser es
How can we tell whether or not $\sum_{n=1}^{\infty} a_{n}$ converges by just looking at the sequence of terms $\left\{a_{n}\right\}_{n=1}^{\infty}$?
reminder If $\sum_{n=1}^{\infty} a_{n}$ converges or diverges then so does $\sum_{n=2}^{\infty} a_{n}$ or $\sum_{n=101}^{\infty} a_{n}$, etc, (I nother words, where the indexing starts has no bearing on whether the series or diverges. For this reason we may phrase the basic question as

BQ The Basic Question About Infinite Ser es
How can we tell whether or not $\sum a_{n}$ converges by just looking at its sequence of terms $\left\{a_{n}\right\}$?

Geometric Series Fact:

$$
1+r+r^{2}+r^{3}+r^{4}+\cdots=\frac{1}{1-r}
$$

if $-1<r<1$.

One more geometric series example:

$$
\sum_{n=1}^{\infty} \frac{3}{10^{n}}=\frac{3}{10}+\frac{3}{10^{2}}+\frac{3}{10^{3}}+\frac{3}{10^{4}}+\cdots
$$

Some partial sums are:

$$
s_{1}=\frac{3}{10}=.3, s_{2}=\frac{3}{10}+\frac{3}{100}=.33, s_{3}=s_{2}+\frac{3}{1000}=.333, s_{4}=.3333
$$

and $S_{n}=.333 \cdots 3$ (repeated n times)
Condude: $\sum_{n=1}^{\infty} \frac{3}{10^{n}}=\lim _{n \rightarrow \infty} S_{n}=\begin{gathered}.333 \overline{3} \\ \text { "repeating decimal" }\end{gathered}$
Now let's view this as a geometric series:

$$
\begin{aligned}
\sum_{n=1}^{\infty} & \frac{3}{10^{n}}=3 \sum_{n=1}^{\infty}\left(\frac{1}{10}\right)^{n}=3\left(\frac{1}{10}+\left(\frac{1}{10}\right)^{2}+\left(\frac{1}{10}\right)^{3}+\cdots\right) \\
& =3\left(1+\frac{1}{10}+\left(\frac{1}{10}\right)^{2}+\left(\frac{1}{10}\right)^{3}+\cdots\right)-3 \cdot 1 \\
& =3 \frac{1}{1-\frac{1}{10}}-3=3 \cdot \frac{10}{9}-3=\frac{10}{3}-\frac{9}{3}=\frac{1}{3}
\end{aligned}
$$

Conclusion
Repeating decimals are examples of geometric series!

The Comparison Test Suppose that $\sum a_{n}$ and $\sum b_{n}$ are series with positive terms.
(i) If $\sum b_{n}$ is convergent and $a_{n} \leqslant b_{n}$ for all n, then $\sum a_{n}$ is also convergent.
(ii) If $\sum b_{n}$ is divergent and $a_{n} \geqslant b_{n}$ for all n, then $\sum a_{n}$ is also divergent.

Example $\sum_{n=1}^{\infty} \frac{1}{n+4^{n}}$. Does it converge or diverge?
To use comparison test, we take $\sum a_{n}=\sum \frac{1}{n+4^{n}}$.
Then we must choose a series $\sum b_{n}$ to compare with. Very often we'll choose $\sum b_{n}$ to be a geometric series or a p-series because then we know about the convergence or divergence of $\sum b_{n}$.

Here a goodchoice would be $\sum b_{n}=\sum \frac{1}{4^{n}}$ which converges because it's a geometric series with $r=\frac{1}{4}<1$.

Then.

$$
a_{n}=\frac{1}{n+4^{n}} \leqslant \frac{1}{4^{n}}=b_{n}, \text { for } n \geqslant 1
$$

Conclude: $\quad \sum a_{n}=\sum \frac{1}{n+4^{n}}$ converges
using part (i) of the Comparison Test.

LCT:
The Limit Comparison Test Suppose that $\sum a_{n}$ and Σb_{n} are series with positive terms. If

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c
$$

where c is a finite number and $c>0$, then either both series converge or both diverge.
examples:
(1) $\sum \frac{n}{n^{3}-1}$. Take $a_{n}=\frac{n}{n^{3}-1}$ and $b_{n}=\frac{1}{n^{2}}$. Then

$$
\frac{a_{n}}{b_{n}}=\frac{n / n^{3}-1}{1 / n^{2}}=\frac{n^{3}}{n^{3}-1}=\frac{1}{1-\frac{1}{n^{3}}} \underset{n \rightarrow \infty}{\rightarrow} 1(=c)
$$

since 1 is a finite number $>0, \sum \frac{n}{n^{3}-1}$ converges.

$$
\left.\begin{array}{l}
\text { (2) } \sum \frac{3 \sqrt{n}+5}{n-\sqrt{n}+1} \text { diverges. } \\
a_{n}=\frac{3 \sqrt{n}+5}{n-\sqrt{n}+1} \\
b_{n}=\frac{1}{\sqrt{n}}
\end{array}\right\} \Rightarrow \frac{a_{n}}{b_{n}}=\frac{3 \sqrt{n}+5}{n-\sqrt{n}+1} \cdot \frac{\sqrt{n}}{1}=\frac{3 n+5 \sqrt{n}}{n-\sqrt{n}+1} \rightarrow 3
$$

and $\sum \frac{1}{\sqrt{n}}$ diverges because it is p-series with $p=\frac{1}{2} \leq 1$.

$$
\frac{3 n+5 n^{1 / 2}}{n-n^{1 / 2}+1} \cdot \frac{1 / n}{1 / n}=\frac{3+5 \frac{1}{n^{1 / 2}}}{1-\frac{1}{n^{1 / 2}}+\frac{1}{n}} \underset{n \rightarrow \infty}{\longrightarrow} \frac{3+0}{1-0+0}=3
$$

