Problem 1:

- $0 \cdot \infty$ is a determinate form: FALSE
- $0 \cdot \infty$ is an indeterminate form: TRUE

To say that $0 \cdot \infty$ is an indeterminate form means that: Just knowing that $\lim _{x \rightarrow a} f(x)=0$ and that $\lim _{x \rightarrow a} g(x)=\infty$ is not enough information to tell what the limit of the product $\lim _{x \rightarrow a} f(x) g(x)$ might equal. (NEITT)

Problem 2:

- $\lim _{x \rightarrow \infty} \frac{5 x^{3}+1}{7 x^{2}+3 x+2}=5 / 7:$ FALSE
- $\lim _{x \rightarrow \infty} \frac{5 x^{3}+1}{7 x^{3}+3 x+2}=5 / 7:$ TRUE

For the first statement:

$$
\lim _{x \rightarrow \infty} \frac{5 x^{3}+1}{7 x^{2}+3 x+2}=\lim _{x \rightarrow \infty} \frac{5 x^{3}+1}{7 x^{2}+3 x+2} \cdot \frac{1 / x^{2}}{1 / x^{2}}==\lim _{x \rightarrow \infty} \frac{5 x+1 / x^{3}}{7+3 / x+2 / x^{2}}=\frac{\infty+0}{7+0+0}=\infty
$$

For the second statement:

$$
\lim _{x \rightarrow \infty} \frac{5 x^{3}+1}{7 x^{3}+3 x+2}=\lim _{x \rightarrow \infty} \frac{5 x^{3}+1}{7 x^{3}+3 x+2} \cdot \frac{1 / x^{3}}{1 / x^{3}}=\lim _{x \rightarrow \infty} \frac{5+1 / x^{3}}{7+3 / x^{2}+2 / x^{3}}=\frac{5+0}{7+0+0}
$$

(You could also use L'Hospital's Rule.)

Problem 3:

- The graph of the function $f(x)=\frac{x e^{x}+1}{e^{x}}$ has a horizontal asymptote on the right: FALSE
- The graph of the function $g(x)=\frac{e^{x}}{x e^{x}+1}$ has a horizontal asymptote on the right: TRUE

For the first statement

$$
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{x e^{x}+1}{e^{x}}=\lim _{x \rightarrow \infty} x+\frac{1}{e^{x}}=\infty+0=\infty .
$$

For the second

$$
\lim _{x \rightarrow \infty} g(x)=\lim _{x \rightarrow \infty} \frac{e^{x}}{x e^{x}+1}=\lim _{x \rightarrow \infty} \frac{1}{x+1 / e^{x}}=1 /(\infty+0)=0+
$$

This shows that the x-axis $y=0$ is a horizontal asymptote for $g(x)$ on the right. (You could also use L'Hospital's Rule to calculate either of these limits).

Problem 4:

- $\lim _{t \rightarrow 0+} \frac{t^{2}+1}{\ln (t)}=0:$ TRUE
- $\lim _{t \rightarrow 0+} \frac{\ln (t)}{t^{2}+1}=0$: FALSE

Use L'Hospital's Rule. For example

$$
\lim _{t \rightarrow 0+} \frac{\ln (t)}{t^{2}+1}=\lim _{t \rightarrow 0+} \frac{1 / t}{2 t}=\lim _{t \rightarrow 0+} \frac{1}{2 t^{2}}=\infty
$$

