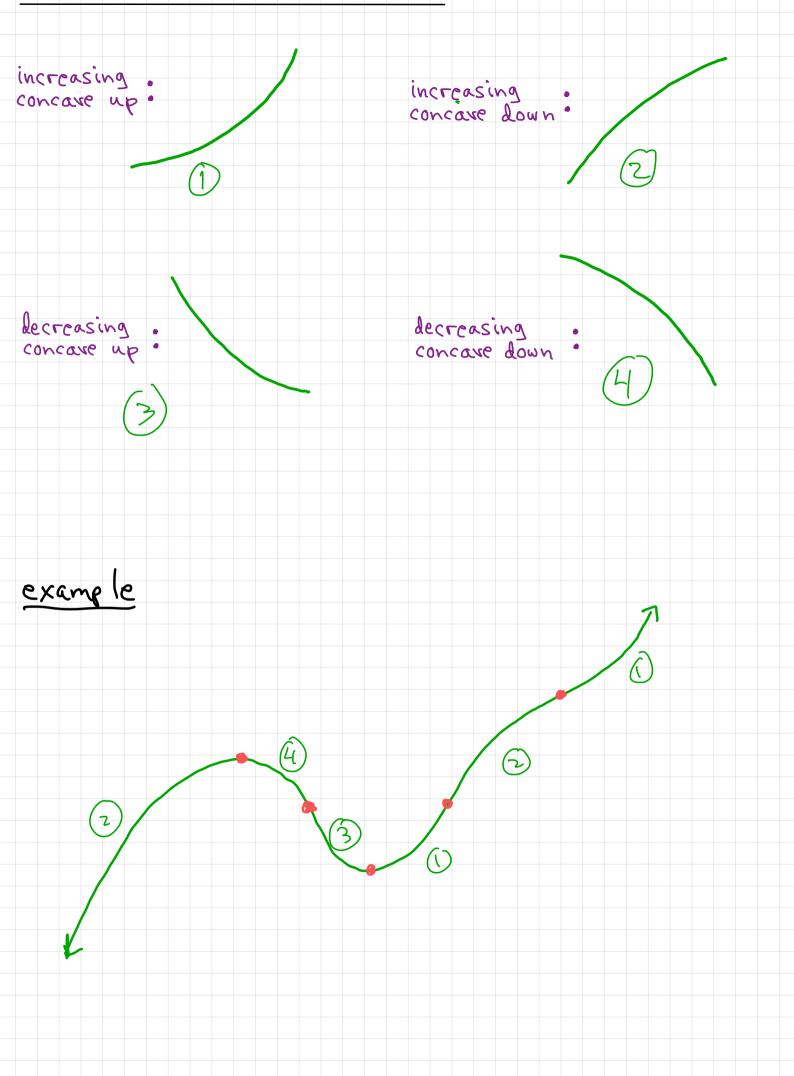
To include in a robust graph:

· Clearly label the coordinate axes

- · Label all curves with their equation
- · Make sure any asymptotes are included
- Mark and give coordinates for all critical points and points of inflection.
 Possibly include x-and y-intercepts as well.
- Adjust aspect ratios as needed to get a useful picture
- Make sure the graph is big and robust enough that it can used to analyze information about the function
- Typically drawing a good graph may take
 2 or 3 scratch paper attempts before
 getting something that looks good.

Four kinds of curve elements:

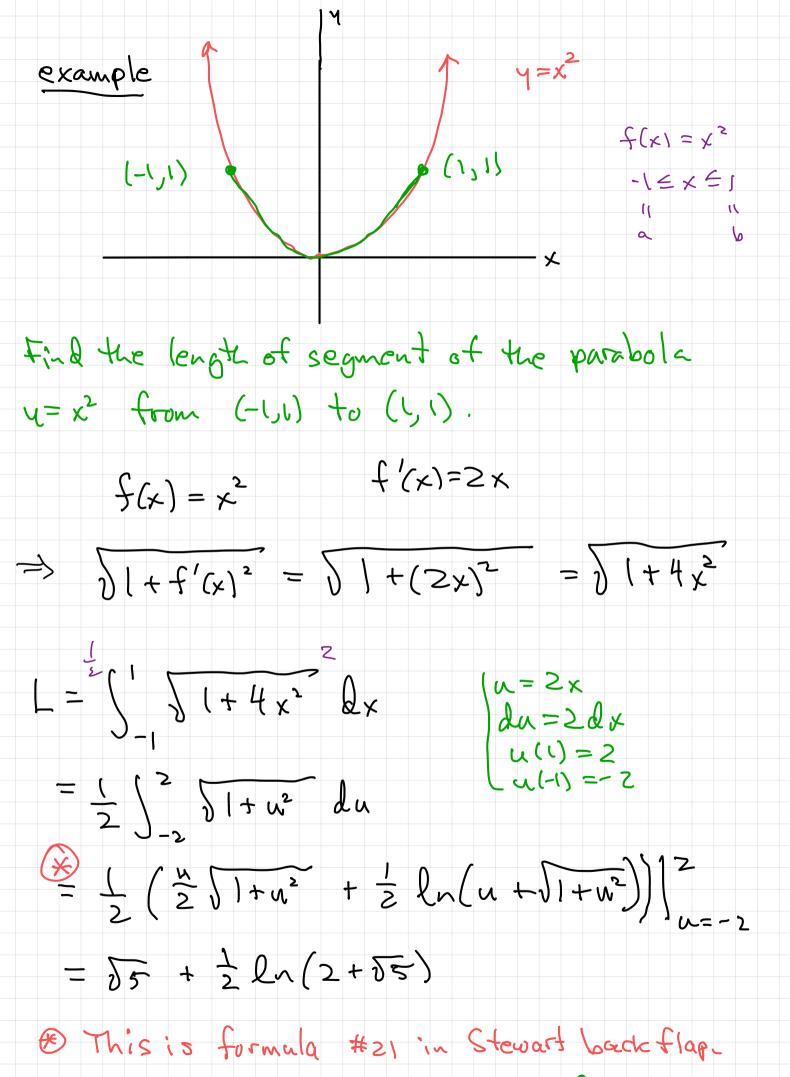


Arclength Formula: (section 8.1) The length L of the curve y = f(x) with $a \le x \le b$ equals $L = \int_{a}^{b} \int (+f'(x)^{2} dx)$ Comes from where? x = b $77 \quad Y = f(x)$ ષ $\chi = \frac{\alpha}{1}$ × L = length of this curve segment. comment The ardength formula is very nice and useful in theory but SJI+f'(x) dx is often very difficult to evaluate.

Stewart section 8.1, page 589

9–20 Find the exact length of the curve. 9. $y = 1 + 6x^{3/2}, \quad 0 \le x \le 1$ **10.** $36y^2 = (x^2 - 4)^3$, $2 \le x \le 3$, $y \ge 0$ **11.** $y = \frac{x^3}{3} + \frac{1}{4x}, \quad 1 \le x \le 2$ **12.** $x = \frac{y^4}{8} + \frac{1}{4y^2}, \quad 1 \le y \le 2$ **13.** $x = \frac{1}{3}\sqrt{y}(y-3), \quad 1 \le y \le 9$ **14.** $y = \ln(\cos x), \quad 0 \le x \le \pi/3$ **15.** $y = \ln(\sec x), \quad 0 \le x \le \pi/4$ **16.** $y = 3 + \frac{1}{2} \cosh 2x$, $0 \le x \le 1$ **17.** $y = \frac{1}{4}x^2 - \frac{1}{2}\ln x$, $1 \le x \le 2$ **18.** $y = \sqrt{x - x^2} + \sin^{-1}(\sqrt{x})$ **19.** $y = \ln(1 - x^2), \quad 0 \le x \le \frac{1}{2}$ **20.** $y = 1 - e^{-x}$, $0 \le x \le 2$

These are some examples where the arclength can be precisely calculated using integration,

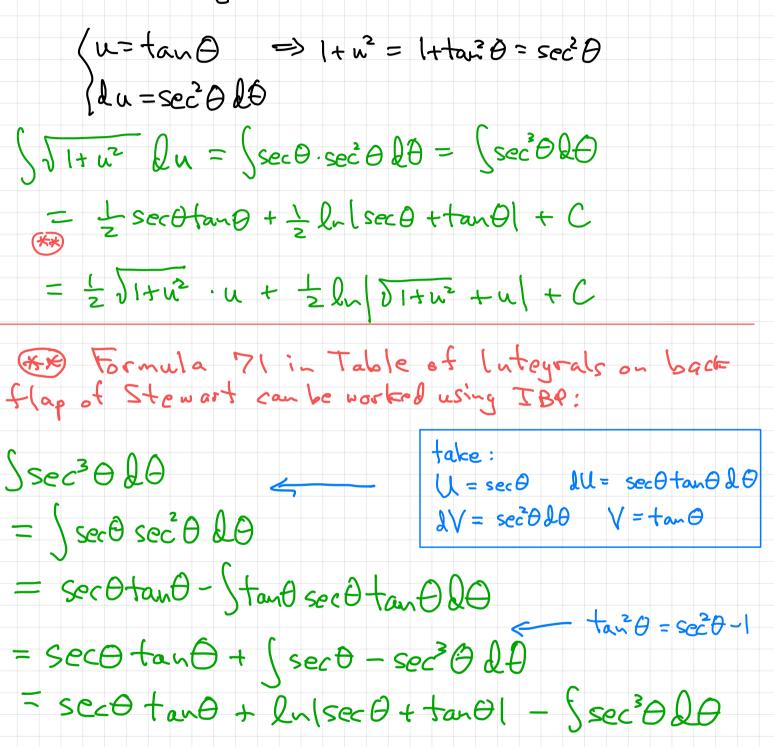


(see ->)

 $\int \sqrt{1+u^2} du = ?$

 \Rightarrow

Make the trig substitution:



 $\int \sec^3 \Theta Q \Theta = \frac{1}{2} \sec \Theta \tan \Theta + \frac{1}{2} \ln \left| \sec \Theta + \tan \Theta \right| + C$

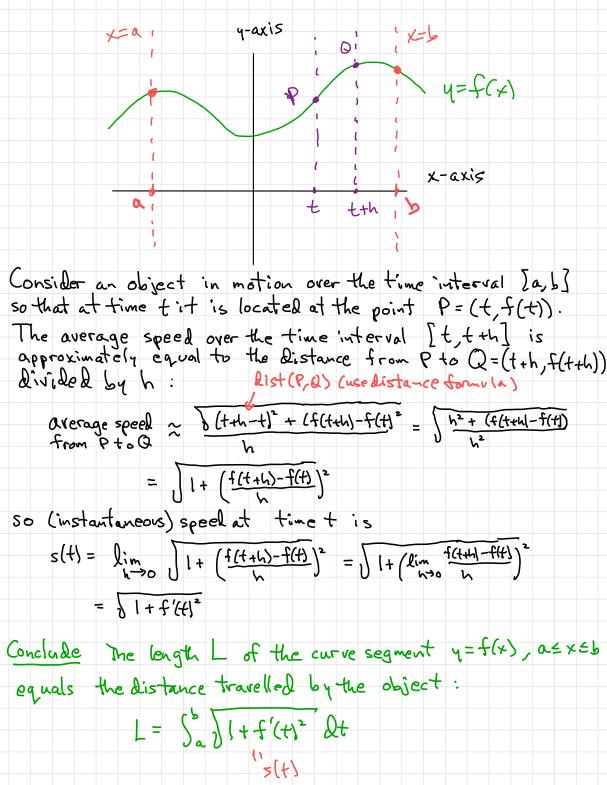
where does are length formula come from ? . _ -

Distance and Integration

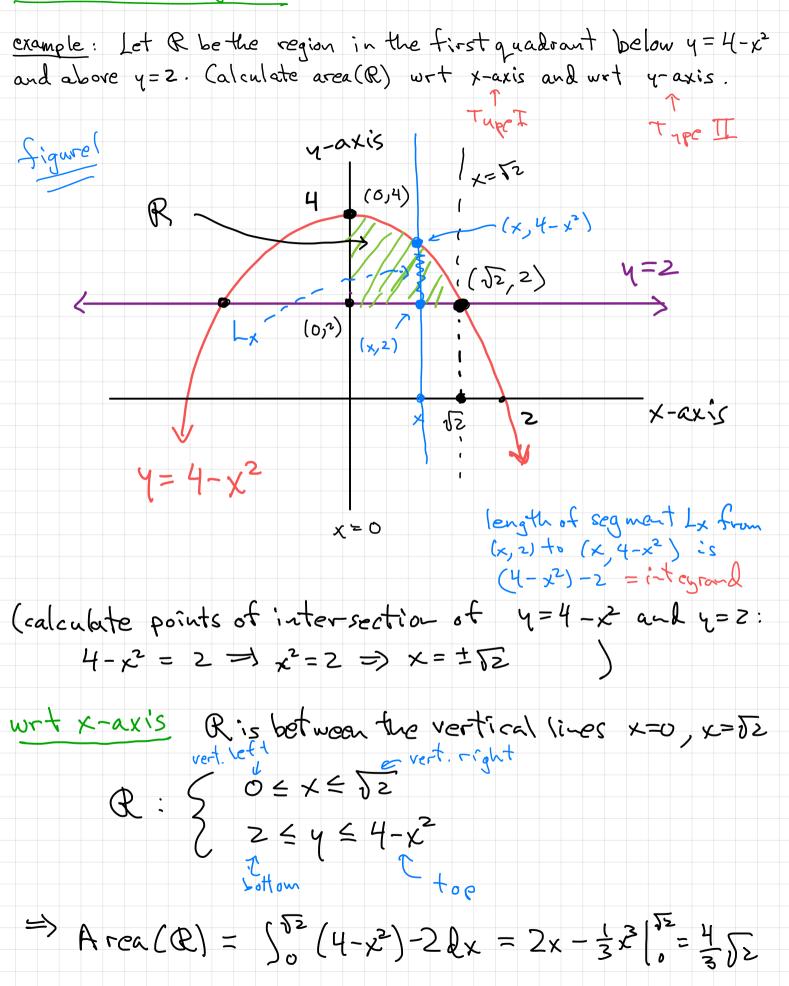
Basic Principle:

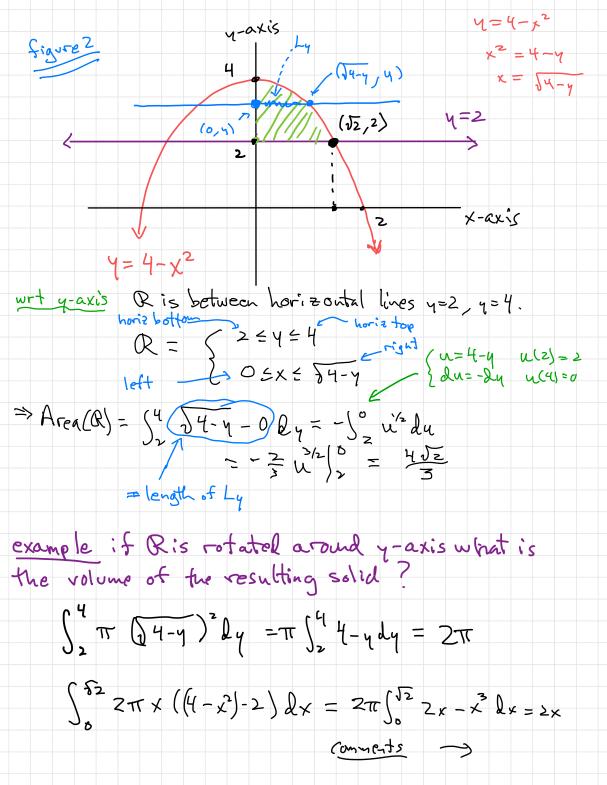
If an object is in motion over a time interval [a,b] and has speed s(t) at time t then the distance it travels over that interval is (s(t) lt.

Very Special Case : Suppose the speed is constant, s(+)=(, then



Type I and I regions (revisited)





to determine the volume we can use:

Risk method: Take y-axis as reference line (axis of rotation): For 2 ≤ y ≤ 4 the cooss section at y is a disk for which the line segment Ly shown in Sigure 2 is a radius, and this disk has area: $T (length Ly)^2 = T (24-y)^2$ Integrating from Z to 4 gives the volume. 05: shell method: Take x-axis as reference line (1 to axis of rotation): For 0=x= JZ, rotate Lx (as shown in figure 1) about y-axis to get a shell (cylinder) with valius =x and height = length (Lx) = (4-x2)-2. This shell has area $2\pi (ralius)(height) = 2\pi \times ((4-x^2)-2)$.

Evanmore problems in Section 7.5:

50. $\int \frac{1}{x^2 \sqrt{4x+1}} dx$

49.
$$\int \frac{1}{x\sqrt{4x+1}} dx$$

51.
$$\int \frac{1}{x\sqrt{4x^2+1}} dx$$

53.
$$\int x^2 \sinh mx \, dx$$

55.
$$\int \frac{dx}{x+x\sqrt{x}}$$

57.
$$\int x\sqrt[3]{x+c} \, dx$$

59.
$$\int \frac{dx}{x^4-16}$$

61.
$$\int \frac{d\theta}{1+\cos\theta}$$

63.
$$\int \sqrt{x} e^{\sqrt{x}} \, dx$$

65.
$$\int \frac{\sin 2x}{1+\cos^4 x} \, dx$$

67.
$$\int \frac{1}{\sqrt{x+1}+\sqrt{x}} \, dx$$

69.
$$\int_1^{\sqrt{3}} \frac{\sqrt{1+x^2}}{x^2} \, dx$$

71.
$$\int \frac{e^{2x}}{1+e^x} \, dx$$

73.
$$\int \frac{x+\arcsin x}{\sqrt{1-x^2}} \, dx$$

75.
$$\int \frac{dx}{x\ln x-x} \, dx$$

79.
$$\int x \sin^2 x \cos x \, dx$$

81.
$$\int \sqrt{1-\sin x} \, dx$$

$\int x^2 \sqrt{4x+1}$
$52. \int \frac{dx}{x(x^4+1)}$
$54. \int (x + \sin x)^2 dx$
$56. \int \frac{dx}{\sqrt{x} + x\sqrt{x}}$
$58. \ \int \frac{x \ln x}{\sqrt{x^2 - 1}} dx$
$\textbf{60. } \int \frac{dx}{x^2 \sqrt{4x^2 - 1}}$
$62. \int \frac{d\theta}{1+\cos^2\theta}$
$64. \int \frac{1}{\sqrt{\sqrt{x}+1}} dx$
66. $\int_{\pi/4}^{\pi/3} \frac{\ln(\tan x)}{\sin x \cos x} dx$
68. $\int \frac{x^2}{x^6 + 3x^3 + 2} dx$
70. $\int \frac{1}{1+2e^x-e^{-x}} dx$
$\textbf{72. } \int \frac{\ln(x+1)}{x^2} dx$
74. $\int \frac{4^x + 10^x}{2^x} dx$
$76. \int \frac{x^2}{\sqrt{x^2+1}} dx$
$\textbf{78. } \int \frac{1 + \sin x}{1 - \sin x} dx$
$80. \int \frac{\sec x \cos 2x}{\sin x + \sec x} dx$
$82. \int \frac{\sin x \cos x}{\sin^4 x + \cos^4 x} dx$

A few hints: #49 (seenext enge) $\#50 u^2 = 4x+($ #51 trig substitution x==+ane #52 u=x2 observe that $\frac{1}{\times (x^{1}+1)} = \frac{\times}{\times^{2}((x^{2})^{2}+1)}$ #54 expandout #55 $x = u^2$, dx = 2 u du $\#_{56} \times = n^2$ $\#57 \times +C = u^3$ $dx = 3u^2 du$ $\# G u^2 =) \pm x^2$ is casier than trig substitution

