

Basic Properties of Integrals Very important See Stewart p. 3 (3 - 315) $0 \int_a^b c dx = c(b-a) \text{ if } cis constant$ $\int_{a}^{b} cf(x) + dg(x) dx = c \int_{a}^{b} f(x) dx + d \int_{a}^{b} g(x) dx$ if c, d ave constants $\int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx = \int_{a}^{b} f(x) dx$ Saf(x) ex = 0 lower bound for f(x) If m = f(x) = M when a = x = b then $m(b-a) \leq \int_{a}^{b} f(x) dx \leq M(b-a)$ $\int_{b}^{a} f(x) dx + \int_{a}^{b} f(x) dx = \int_{b}^{b} f(x) dx$ $\Rightarrow \int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$ Shows property 6 follows from 3 and 4.

$$\int_{\alpha}^{c} f(x) dx + \int_{c}^{b} f(x) dx = \int_{\alpha}^{b} f(x) dx$$

Can also write this as:

$$\int_{c}^{b} f(x) dx = \int_{a}^{b} f(x) dx - \int_{c}^{b} f(x) dx$$

The Fundamental Theorem of Calculus (FTC) How can we calculate Saf(x) Qx? Let's study $F(t) = \int_{\alpha}^{t} f(x) Qx$.
What is F'(t)? $F(t+h) - F(t) = \frac{1}{h} \left(\int_{a}^{t+h} f(x) dx - \int_{a}^{t} f(x) dx \right)$ $= \frac{1}{h} \int_{t}^{t+h} f(x) dx \approx \frac{1}{h} \int_{t}^{t+h} f(t) dx = \frac{1}{h}$ If h is very small then the minimum as max. of f(x) on It, thy will very close to f(t). $=\frac{1}{h}f(t)((t+h)-t)=\frac{1}{h}f(t)h=f(t)$ Conclude This shows that F'(t) = f(t) = integrand of original integral!!FTC - Versian 1: If F(t) = St f(x) 1x then (i) F'(t) = f(t), and (ii) F(a) = 0

example
$$\int_{-2}^{1} x^{3} dx = ??$$

Let $F(t) = \int_{-2}^{2} x^{3} dx$ then FTC says

(i) $F'(t) = t^{3}$, and (ii) $F(-2) = 0$.

By (i) it must be that:

 $F(t) = \frac{1}{4}t^{4} + C$ for some constant ()

By (ii) it must be that $C = -4$.

(check: $\frac{1}{4}(-2)^{4} - 4 = \frac{1}{4}(16) - 4 = 0$.)

So $F(t) = \frac{1}{4}t^{4} - 4$

Now observe that

 $\int_{-2}^{2} x^{3} dx = F(1) = \frac{1}{4}(1)^{4} - 4 = -\frac{15}{4}$

It's a magic frick!

The previous example suggests that many integrals can be calculated using "anti derivatives", but the process is a bit circuitous. A more direct approach uses:

FTC - Version 2 If F(x) is any autiliarisative for f(x) then convenient shorthand $\int_{a}^{b} f(x) dx = F(b) - F(a) = F(x) |_{x=a}$

example To calculate $\int_{-2}^{1} x^3 dx$ we can see that $F(x) = \frac{1}{4}x^4$ is an antiletivative of $F(x) = x^3$ so

 $\int_{-2}^{1} x^{3} dx = \frac{1}{4} x^{4} \Big|_{x=-2}^{4} - \frac{1}{4} (-2)^{4} = -\frac{15}{4}$

To clarify:

Definition: F(x) is an antiderivative for f(x) provided that F(x) = f(x) Problem (using FTC)

Find a formula for F(x) where

(a)
$$F(x) = \int_{1}^{x} -7t^{2} + 3t - 2 lt$$

(b)
$$F(x) = \int_0^x -7t^2 + 3t - 2 dt$$

(a) By FTC, F(x) =
$$f(x) = -7x^2 + 3x - 2$$

So F(x) is an antiderivative of $f(x)$

$$f(x) = -7x^2 + 3x - 2$$

$$f(x)$$

$$\frac{d}{dx} \left(-\frac{7}{3}x^{3} + \frac{3}{2}x^{2} - 2x \right) = -7x^{2} + 3x - 2$$

Take
$$F(x) = -\frac{7}{3}x^3 + \frac{3}{2}x^2 - 2x + C$$

then $F(1) = -\frac{7}{3} + \frac{3}{2} - 2 + C = -\frac{17}{6} + C$

$$F(x) = -\frac{7}{3}x^3 + \frac{3x^2}{2} - 2 + \frac{17}{6}$$

(b) Take
$$F(x) = -\frac{2}{3}x^3 + 3\frac{x^2}{2} - 2x$$
. Then
$$F'(x) = -7x^2 + 3x - 2 \text{ and } F(0) = 0.$$