1. (10 points) If \(f(x) = \ln\left(\frac{x - 2}{2x + 1}\right) \) then find a formula for the inverse function \(f^{-1}(x) \).

2. (5 points) Sketch the graph of \(y = \arctan(x) \). Indicate on your graph both coordinates of the points of intersection with the vertical lines \(x = 1 \) and \(x = -1 \).

3. (20 points) Compute each of the following integrals:
 (a) \(\int 2x + 1 \, dx \)
 (b) \(\int \sec(\theta) \tan(\theta) \, d\theta \)
 (c) \(\int x \sin(x) \, dx \)
 (d) \(\int x^2 \, dx \)
 (e) \(\int x \, dx \)
 (f) \(\int_{\ln(3/8)}^{\ln(\pi/\sqrt{2})} \cos(2e^x) \, dx \)

4. (15 points) (a) Find the actual partial fractions decomposition for \(f(x) = \frac{x}{x^2 - 3x - 18} \).
 (b) Use your answer to (a) to work the integral \(\int f(x) \, dx \).
 (c) Find the actual partial fractions decomposition for \(g(x) = \frac{x^2 - 26x - 54}{x^2 - 3x - 18} \).

5. (8 points) Determine the limits:
 (a) \(\lim_{x \to \infty} \frac{\ln(x + 1)}{x^2 + 1} \)
 (b) \(\lim_{x \to \infty} g(x) \) where \(g(x) = (x + 1)^{1/(x^2 + 1)} \) (Hint: the two limits are related.)

6. (8 points) Let \(f(x) = e^{-x^2 + x - 1} \). (a) Use calculus to show that \(f(x) \) has exactly one local extreme, and find its value. (b) Use your answer to (a) to describe the range of \(f \).

7. (12 points) Work the integral \(\int \frac{1}{x^2 + 1} \, dx \). Use this problem to illustrate the technique of trig substitution, and the use of half-angle formulas and right triangle analysis.

8. (10 points) Find the area inside the ellipse with equation \(\frac{y^2}{2} + \frac{x^2}{4} = 1 \). [picture drawn on board.]

9. (12 points) Let \(R \) be the region in the \(xy \)-plane bounded by the curves \(y = 1/x, \, y = 1, \, x = 1 \) and \(x = 2 \). Let \(S \) be the solid obtained by rotating \(R \) around the \(x \)-axis.
 (a) Sketch the region \(R \) (b) Express the area of \(R \) as a definite integral.
 (c) Express the volume of \(S \) as a definite integral using the washer method.
 (d) Express the volume of \(S \) as a definite integral using the shell method.