Assignment #4 2-22-05

p. 78 S. J. S.
(Due in general matrix for (from (4) on p. 62):

\[\begin{bmatrix} a & b & c & \ldots & j & k \end{bmatrix} \]

When \((a b c d e f g h i j k)^T\) is multiplied by the general matrix, rows 1 through 11 give the

\[\begin{align*}
 u &= a + d + e + g + h + i + j + k \\
 x &= a + b + c + d + e + g + h + i \\
 y &= b + c + e + g + h + i + j + k \\
 z &= c + d + e + g + h + i + j + k
\end{align*} \]

In the following table, draw a "check" if the

variable \(a-\) \(k \) appears in \(u-x\):

\[
\begin{array}{cccccccc}
 a & b & c & d & e & f & g & h \\
 u & V & V & V & V & V & V & V \\
 x & V & V & V & V & V & V & V \\
 y & V & V & V & V & V & V & V \\
 z & V & V & V & V & V & V & V \\
\end{array}
\]

Notice that every column of the table has a different pattern of

checks. If the element of the first column is changed, then

the element among \(a x g \) that change are those checked.

Since all columns are different, any single error in \(a-\) \(k \) changes \(a x g \) differently. And any single error among

\(a x g \) changes \(a x g \) differently as well. Thus, any

single error changes a different set of the relations \(\star\),

errors in \(a-\) \(k \) changing at least 2, errors in \(a x g \)

changing only one.
5.3. (Refer to Theorem 2.19.) If \(d(H') = d(K') = 4 \),

then \(H' \) & \(K' \) can correct \(t \) errors and detect \(\leq t + 1 \) errors.

If \(d(H') \geq 2S + t + 1 \), \(d(K') \geq 2S + t + 1 \),

and \(4 = 2S + 1 + 1 \) (\(\text{i.e., } S = t = 1 \)), \(H' \) will correct \(5 \) errors and detect \(2 \). By examining the codewords in page 7,

we see \(d(H') = d(K') = 4 \).

Now suppose \(u \in H' \) and \(\text{wt}(u) = 4 \). Then \(\exists \ v \in \mathbb{Z}_2^8 \)

such that \(d(u, v) = 2 = d(v, 0) \). (\(\text{wt}(v) \)). Then

if \(v \) is received, it differs by 2 errors from 2 codewords,

\(u \) and \(0 \). So we cannot correct 2 errors made in \(u \), in general.

Thus, reasoning applies to \(K' \).