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Abstract

Let G be an observable subgroup of GLn. We produce an extension of
differential commutative rings generic for Picard–Vessiot extensions with
group G.

1 Introduction

Let C be an algebraically closed field of characteristic zero, regarded as a dif-
ferential field with the trivial derivation, and let G be an algebraic subgroup
of GLn(C). In [3], L. Goldman considered generic differential equations for G,
namely an order n (monic, homogeneous, linear) differential equation with the
properties that, for differential fields F with constant field C, (1) a Picard–
Vessiot extension of F with group G is an extension for a specialization of the
equation to F ; and (2) for every specialization of the equation to F the corre-
sponding Picard–Vessiot extension has differential Galois group a subgroup of
G.

In this paper, we consider the construction of generic ring extensions in a
similar context. More precisely, we show that, under the condition of observ-
ability of the algebraic subgroup G of GLn(C) = GL(V ), there is a differential
ring extension R ⊇ RG which is a generic extension for order n (monic, linear,
homogeneous) differential equations (over differential fields F with constants C)
with group G in the sense that:

1. If E ⊇ F is a Picard–Vessiot extension for an order n equation with
G(E/F ) = G, then there is a C algebra differential homomorphism Φ :
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R → E with Φ(RG) ⊂ F such that E is the quotient field of Φ(R)F (first
generic property of R); and

2. If φ : RG → F is any C algebra differential homomorphism and P any
maximal differential ideal of R = F ⊗φ R then the quotient field K of
R/P is a Picard–Vessiot extension of F with G(K/F ) a subgroup of G
and the induced homomorphism Φ : R → K has the property that K is
the quotient field of Φ(R)F (second generic property of R).

These results imply corresponding results for generic equations, as we show
below (Section 4).

Let y1, . . . , yn be differential indeterminates over C, or more precisely, con-
sider the ring C{y1, . . . , yn} of differential polynomials in the yi’s over C. Let
w = det(y(j)

i ) be the Wronskian determinant of the yi’s and consider, finally, the
differential C algebra R = C{y1, . . . , yn}[w−1]. As we recall below, there are
elements b0, . . . , bn−1 of R such that the yi’s all satisfy the linear homogeneous
differential equation Y (n) + bn−1Y

(n−1) + · · ·+ b0Y = 0. Moreover, the bi’s are
all differentially independent over C, so that R is an algebra over its subring
C{b0, . . . , bn}.

Now suppose that F is a differential field with field of constants C, that
Y (n) + an−1Y

(n−1) + · · · + a0Y = 0 is a differential equation over F and that
E ⊇ F is a Picard–Vessiot (differential Galois) extension for this equation. Let
u1, . . . , un in E be a (full) set of solutions, linearly independent over C (hence
with non–zero Wronskian.) Because the yi are differential indeterminates, there
is a differential C algebra homomorphism C{y1, . . . , yn} → E with yi 7→ ui,
and since the Wronskian of the ui is non–zero this extends to a differential C
algebra homomorphism Φ : R → E. It follows from the definitions that E is
the quotient field of the subring FΦ(R), and it is elementary that Φ(bi) = ai.

On the other hand, if d0, . . . , dn−1 are any elements of F and φ : C{b0, . . . , bn−1} →
F is the differential C algebra homomorphism with φ(bi) = di, we can consider
the F algebra R = F ⊗φ R. Because the yi’s satisfy the differential equation
with coefficients bi, their images zi = 1 ⊗ yi in R satisfy the differential equa-
tion with coefficients φ(bi) = di. In particular, R is finitely generated as an
(ordinary) F algebra. If we select a maximal differential ideal P of R, mod it
out, and take the quotient field K of the ring R/P , we then have that K is a
Picard–Vessiot extension of F for Y (n) + dn−1Y

(n−1) + · · ·+ d0Y = 0, and the
composite R → R → R/P → K, which we denote by Φ, has the property that
K is the quotient field of FΦ(R) and that Φ(bi) = di.

Because of the above, one could say in some weak sense that the equation
Y (n) + bn−1Y

(n−1) + · · ·+ b0Y = 0 is generic for order n (monic, linear, homo-
geneous) differential equations over differential fields with field of constants C,
and that R is the ring of generic solutions of the generic equation. In the same
sense, R ⊃ C{b0, . . . , bn} is generic for order n Picard–Vessiot extensions.

The discussion so far, however, has ignored differential Galois groups. To
bring them into the picture, we consider the n-dimensional C vector space
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V = Cy1+ · · ·+Cyn. In the above notation(s), Φ : V → E (or Φ : V → K) is an
injection, and the differential Galois group, in either case, is represented faith-
fully on Φ(V ) and hence in GL(Φ(V )). Additionally, every linear automorphism
of V extends to a differential automorphism of R which leaves C{b0, . . . , bn}
fixed. But these differential automorphisms need not commute with Φ in either
case. Thus in the above characterization of R ⊃ C{b0, . . . , bn} as a generic
extension, there is no group G.

We retain the notation C introduced above. For terminology and basic
results regarding differential Galois extensions with linear algebraic differential
Galois group (Picard–Vessiot extensions) we refer to [5] and [6]. If E ⊃ F
is a differential field extension, we will denote the derivation DE by D when
no ambiguity arises. If S is a subset of E, we let F 〈S〉 denote the smallest
differential subfield of E that contains both F and S. If S is a subset of the
differential ring T and R is a differential subring of T we let R{S} denote the
smallest differential subring of T that contains both R and S. We denote the
field of constants of E by CE . The extension has no new constants if CE = C.
For an element y of any extension E, we use y′ and y(n) to denote D(y) and
Dn(y) as usual. We always use G(E/F ) to denote the group of differential
automorphisms of E over F . We begin by recalling some notation, definitions,
and standard results:

If E ⊃ F is a Picard–Vessiot, or Differential Galois, extension for an order
n monic linear homogeneous differential operator

L = Y (n) + an−1Y
(n−1) + · · ·+ a1Y

(1) + a0Y ; ai ∈ F (1)

and V = {y ∈ E | L(y) = 0} then E is differentially generated over F by V , the
constants of E are those of F (“no new constants”), and dimC(V ) = n (“full
set of solutions”).

For Picard–Vessiot extensions, G(E/F )→ GL(L−1(0)) is an injection with
Zariski closed image.

We retain the conventions and the notations (and the choices made in intro-
ducing those notations) of this introduction throughout.

2 The Ring of Generic Solutions

We begin by considering the ring C{y1, . . . , yn} of differential polynomials in
the differential indeterminates y1, . . . , yn over the constant field C. We let the
group GLn(C) act in the standard way on the n-dimensional C vector space
Cy1 + · · ·+Cyn; this action extends linearly to a rational action by differential
automorphisms on C{y1, . . . , yn} (see [5, Example 3.29, p.37]). We introduce
the following notation

Notation 1. Let W denote the n+ 1× n matrix
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y
(0)
1 y

(1)
1 . . . y

(n)
1

y
(0)
2 y

(1)
2 . . . y

(n)
2

...
...

. . .
...

y
(0)
n y

(1)
n . . . y

(n)
n


Let Wi, 0 ≤ i ≤ n denote the n×n matrix obtained from W by deleting column
i from it. Let wi denote the determinant of Wi.

Now let Y be an additional differential indeterminate over C. The wi’s, up
to sign, are the coefficients of the Wronskian determinant w(Y, y1, . . . , yn)∣∣∣∣∣∣∣∣∣∣

Y (0) y
(0)
1 . . . y

(0)
n

Y (1) y
(1)
1 . . . y

(1)
n

...
...

. . .
...

Y (n) y
(n)
1 . . . y

(n)
n

∣∣∣∣∣∣∣∣∣∣
namely w(Y, y1, . . . , yn) =

∑n
i=0(−1)iwiY

(i).
Under the GLn(C) action on C{y1, . . . , yn} each wi is a semi-invariant of

weight det [5, Proposition 2.6, p.17]. In particular, this means that the GLn(C)
action extends to a rational action on the differential ring C{y1, . . . , yn}[w−1

n ].
This latter is our ring of generic solutions.

Definition 1. R = C{y1, . . . , yn}[w−1
n ] is called the ring of generic solutions

of a linear monic order n equation. We regard the previously specified GLn(C)
action on R as part of this definition.

Notation 2. For 0 ≤ i ≤ n− 1, let bi ∈ R denote (−1)iwiw
−1
n so that

w−1
n w(Y, y1, . . . , yn) = Y (n) + bn−1Y

(n−1) + · · ·+ b0Y
(0).

We let L(y1, . . . , yn)(Y ) denote the differential operator on the right hand side
of this equation. When no confusion arises, we will simply denote this operator
L(Y ).

We note that each bi is a GLn(C) invariant of R and that each yi satisfies
L(yi) = 0. Further, the bi’s are differentially independent over C [5, Theorem
2.17, p.22] so that C{b0, . . . , bn−1} is a differential C subalgebra of R. Using L,
the y(j)

i for j ≥ n can be expressed as linear combinations of y(0)
i , . . . , y

(n−1)
i ,

from which it follows that

R = C{b0, . . . , bn−1}[y(j)
i , 1 ≤ i ≤ n, 0 ≤ j ≤ n− 1][w−1

n ]. (2)

This is a localization of an (ordinary) polynomial ring extension: the y(j)
i are

algebraically independent over C{b0, . . . , bn−1}, by [5, Theorem 2.17, p.22].
Now we make explicit the structure of R as a GLn(C) module.
To begin this task, we note that R can be regarded as the coordinate ring

of the (infinite) algebraic variety GLn(C) × V , where V denotes a countable
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product of the space Cy1 + · · · + Cyn. In this identification, {y(j)
i | 1 ≤ i ≤

n, 0 ≤ j ≤ n− 1} are coordinates on GLn(C) (y(j)
i gives the entry in row i and

column j+1 of a matrix in GLn(C)), wn is the determinant on GLn(C), and for
each j ≥ n, y(j)

1 , . . . y
(j)
n are the coordinates of a copy of Cy1 + · · ·+Cyn. Let Vt

denote the same space V except with trivial GLn(C) action, and let I : V → Vt

be the identity function. There is a standard GLn(C) equivariant bijection
GLn(C) × V → GLn(C) × Vt given by (g, v) 7→ (g, I(g−1v)) (with inverse
(g, v)→ (g, gI−1(v))). ThusR becomes, under this isomorphism, the coordinate
ring of GLn(C) × Vt so that R ∼= C[GLn] ⊗ C[Vt] as C algebras with GLn(C)
action. In this identification C[GLn] is C[y(j)

i , 1 ≤ i ≤ n, 0 ≤ j ≤ n − 1][w−1
n ]

and C[Vt] is RGLn . This implies that

R = RGLn(C) ⊗C C[y(j)
i , 1 ≤ i ≤ n, 0 ≤ j ≤ n− 1][w−1

n ]. (3)

The bi’s are GLn(C) invariants, and hence C{b0, . . . , bn−1} is contained in
RGLn(C). Combining (2) and (3), we conclude:

Proposition 1. For R = C{y1, . . . , yn} with GLn(C) action extended from the
linear action on V = Cy1 + · · ·+ Cyn using the basis y1, . . . , yn, we have

1. RGLn(C) = C{b0, . . . , bn−1};

2. As algebras with GLn(C) action,

R = RGLn(C) ⊗C C[y(j)
i , 1 ≤ i ≤ n, 0 ≤ j ≤ n− 1][w−1

n ]

= RGLn(C) ⊗C C[GLn(C)].

It is important to remember that the tensor product decomposition in Propo-
sition (1) is not as differential algebras. Indeed, the differential subalgebra gen-
erated by the second factor C[GLn(C)] is all of R.

3 Order n Extensions

Definition 2. A Picard–Vessiot extension E ⊃ F is said to be of order n if it
is a Picard–Vessiot extension for some monic linear differential operator over
F of order n.

The following result is well known. We include it here for completeness and
the lack of convenient reference.

Lemma 1. Assume that F contains a non-constant. Let E ⊃ F be a Picard–
Vessiot extension with G(E/F ) infinite. Let W be any faithful finite-dimensional
rational module for G(E/F ). Then there is a G(E/F ) module injection ψ :
W → E and E = F 〈ψ(W )〉.
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Proof. Let G denote G(E/F ). Let V be any rational G submodule of E on
which G acts faithfully, and let K = F 〈V 〉. By the Fundamental Theorem of
differential Galois theory, K = EH , where H is the subgroup of G consisting of
elements which are the identity on K. Thus H acts trivially on V , and hence H
is trivial, and so K = E. Thus it suffices to prove the existence of the injection
ψ.

We will use a few properties of rational, not necessarily finite dimensional, G
modules, namely that that the coordinate ring C[G] is a rationally injective G
module and that the tensor product of a rationally injective G module and an
arbitrary rational G module is rationally injective [1, p.4]. We also observe that
any rational G module, in particular a finite diemnsional one, is an essential
extension of its socle.

Let T denote the sum of all the rational G submodules of E. We recall that
by Kolchin’s Theorem [5, Theorem 5.12 p.67] there is a G module and algebra
isomorphism

F ⊗F T ∼= F ⊗C C[G].

(Here F is the algebraic closure of F .) In fact, the isomorphism already occurs
for a finite extension K ⊃ F in place of F . Since K is a trivial G module, and
by assumption is infinite dimensional over C, this isomorphism can be written

⊕T ∼= ⊕C[G]

the number of summands on the left being equal to [K : F ] and that on the
right being infinite. We note that the right hand side is an injective G module
(since C[G] is an injective G module and the direct sum can be considered as
the tensor product of C[G] and an infinite dimensional trivial module), and
hence so is the left, and hence so is T , and that each simple finite dimensional
G module occurs with infinite multiplicity in the right hand side, hence on the
left, and hence also in T . Because T contains representatives of all simple G
modules, each with at least countable mutiplicity, it follows that T contains a
copy of every finite dimensional semi-simple module. Now suppose that V is a
finite dimensional G module with socle Vs. Since this socle is semi-simple, there
is a embedding Vs → T which, since T is injective, extends to a G morphism
V → T . The kernel of this morphism has trivial socle, and hence is trivial, so
in fact W embeds in T . We conclude that every finite dimensional G module
occurs in T .

Lemma 1 immediately implies the first universal property of the ring R:

Theorem 1. Assume that F contains a non-constant, that E ⊃ F is a Picard–
Vessiot extension with Galois group G(E/F ), and that G(E/F ) has a faithful
representation ρ in GLn(C). Then E ⊃ F is of order n and there is a differential
homomorphism Ψ : R → E such that

1. E is the quotient field of FΨ(R); and
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2. E is a Picard–Vessiot extension of F for

L = Y (n) + Ψ(bn−1)Y (n−1) + · · ·+ Ψ(b0)Y (0); and

3. Ψ is G(E/F ) equivariant, so Ψ(RG(E/F )) is contained in EG(E/F ) = F .

Proof. Let G = G(E/F ). Let W denote the G module obtained by G acting
on

∑
Cyi via ρ. By Lemma 1, we have an embedding ψ : W → E, and we

know that the image of this embedding generates E over F differentially. Note
that the elements ψ(yi) are linearly independent over C, and thus have non–
zero Wronskian. Hence we can define a differential homomorphism Ψ : R → E

which sends yi to ψ(yi). Let W (j) =
∑
Cy

(j)
i and let ψ(j) be the restriction

of Ψ to W (j). Then W (0) = W and ψ(0) = ψ and therefore is G equivariant,
and it follows that each ψ(j) is G equivariant as well. Then the canonical
extension of each ψ(j) to a map from the symmetric algebra SC(W (j)) to E is
G equivariant, and so is the tensor product of all of these. But this is the map
C{y1, . . . , yn} → E used to produce Ψ. It then follows that Ψ has the specified
properties.

In Theorem 1 we showed that Ψ(RG(E/F )) is contained in EG(E/F ) = F . We
now turn our attention to homomorphisms with this property. More precisely,
we now fix a subgroup G of GLn(C), a differential field F with field of constants
C, and we consider differential homomorphisms φ : RG → F .

Let α denote the restriction of φ to RGLn(C) and consider the differential F
algebra R = F ⊗α R. Note that R = F [y0

1 , . . . , y
(n−1)
n ][w−1

n ]. We can factor φ
through α, and we denote the corresponding homomorphism RG → F by φ as
well. Let Q denote the kernel of φ, and let P be any maximal differential ideal
of R lying over Q. Now we take the quotient field E of R/P . Let Φ : R → E be
the resulting homomorphism. Then Φ extends φ. By [5, Corollary 1.18, p. 11],
we know that E has field of constants C. We also observe that E is differentially
generated over F by the Φ(yi), which are linearly independent over C since their
Wronskian, Φ(wn), is necessarily non-zero, and that each Φ(yi) is a solution of
the monic linear differential equation L = Y (n)+φ(bn−1)Y (n−1)+· · ·+φ(b0)Y (0).
It follows that E is a Picard–Vessiot extension of F . We now show that, provided
that G is observable in GLn(C) [4], that G(E/F ) must be a subgroup of G
(second generic property of R).

Theorem 2. Assume that G is an observable subgroup of GLn(C). Let φ :
RG → F be a differential F algebra homomorphism, let α be the restriction of
φ to RGLn(C). Let P be a maximal differential ideal of R = F ⊗α R whose
inverse image in R contains the kernel of φ, and let E be the fraction field of
R/P . Then E is a Picard–Vessiot extension of F with G(E/F ) a subgroup of
G.

Proof. All the assertions of the theorem have already been established, except
the final one, in the discussion immediately preceding it. We resume that discus-
sion, keeping the same notation. By Proposition 1, R = RGLn(C)⊗C[GLn(C)]
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and hence R = F ⊗α R = F ⊗ C[GLn(C)]. Since F is a flat, indeed free, C
module, we have RG = (F ⊗C[GLn(C)])G = F ⊗ (C[GLn(C)]G). Let S be the
subring of E consisting of all elements satisfying a linear differential equation
over F . By construction, R/P is a subring of S. We have the commutative
diagram

R −−−−→ Sx x
RG −−−−→ F

which can also be written

F [GLn(C)] −−−−→ Sx x
F [GLn(C)]G −−−−→ F

The action of GLn(C) on R = F [GLn(C)] is the standard one, and the map
R → R is GLn(C) equivariant. The map R → S is not GLn(C) equivariant;
in general, GLn(C) does not act on S. However, the stabilizer GLn(C)P in
GLn(C) of the kernel P acts as differential automorphisms on R/P , its quotient
field E, and hence the ring S. In [5, Theorem 4.14, p.49], it is shown that this
action gives an isomorphism of GLn(C)P and G(E/F ). In particular, we have
that R→ S is G(E/F ) equivariant.

Now we apply Kolchin’s Theorem (op. cit.) again: tensor over F with the
algebraic closure F to obtain

F [GLn] −−−−→ F ⊗F Sx x
F [GLn]G −−−−→ F

Because G is observable in GLn(C), we have that F [GLn]G is the coordinate
ring of an affine variety densely containing the coset variety G\GLn. And by
Kolchin’s Theorem, we have that F ⊗F S is the coordinate ring of G(E/F ) with
scalars extended to F . Hence the above diagram of rings corresponds to the
diagram

GLn ←−−−− G(E/F )y y
G\GLn ←−−−− (pt)

Since the top horizontal map is G(E/F ) equivariant, this diagram implies that
a coset of G(E/F ) is contained in a coset of G, and hence that G(E/F ) is a
subgroup of G.

Remark 1. In the situation and notation of Theorem 2, there may not be any
ideals P . For convenience, we assume that F = F and let X be the affine variety
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with coordinate ring F [GLn]G. Then Q corresponds to a point of X, and if it
happens to lie in X −G\GLn there will be no ideal of R over Q. In case G is
not simply observable, but is actually co–affine (meaning that G\GLn is affine),
then P ’s always exist for any Q. Reductive subgroups are always co–affine, and
since GLn is reductive and the characteristic is zero, these are the only ones.

We exhibit an example where the situation of Remark 1 occurs below (Ex-
ample 1). Here, we record the existence consequences of Remark 1 as a corollary
to Theorem 2.

Corollary 1. Assume that G is a reductive subgroup of GLn(C). Let φ : RG →
F be a differential F algebra homomorphism, and let α be the restriction of φ
to RGLn(C). Then there exists a maximal differential ideal P of R = F ⊗α R
whose inverse image in R contains the kernel of φ. The fraction field E of R/P
is a Picard–Vessiot extension of F with G(E/F ) a subgroup of G.

Example 1. Let n = 2, F = C(x) (rational functions with x′ = 1) and G =
Ga ≤ GLn(C). To simplify notation, we will write C[GL2] as C[a, b, c, d][(ad−
bc)−1] and let Ga with coordinate t act by b 7→ b + ta, d 7→ d + tc, a 7→ a,
and c 7→ c. Then C[GL2]G = C[a, c, (ad − bc), (ad − bc)−1]. Then we think of
R as C{a, b}[w−1] with c = a′, d = b′, and w = ad − bc. Choose φ so that
φ(b0) = φ(b1) = 0 (so the differential equations is Y ′′ = 0). Then in F [GL2] we
have a′′ = b′′ = 0. Then define φ on F [GL2]G to satisfy φ(a) = φ(c) = 0 and
φ(ad− bc) = 1, which is easily checked to be a differential homomorphism. But
there is no extension of φ to a homomorphism, differential or not, F [GL2]→ T
for any ring T ⊇ F : both a and c would be sent to zero, which precludes sending
ad − bc to a non–unit. Explicitly, Q here is the ideal generated by a, c, and
(ad − bc) − 1, which is proper in F [GL2]G but not in F [GL2]. Geometrically,
Ga\GL2 is embedded in C × C × (C − {0}) via(

a b
c d

)
7→ (a, c, ad− bc).

4 Generic Equations

As noted in the introduction, our results touch on previous investigations of
Goldman [3] (see also [2]) and in fact were inspired by trying to transform
that work from the language of fields and specializations to the language of
rings and homomorphisms. Goldman works with equations, and to explain the
connections we will need some additional comments on our results. Goldman’s
groups are all reductive, and we make that simplifying assumption as well.

We fix a reductive algebraic subgroup G of GLn(C) and consider a homo-
morphism φ : RG → F as in Theorem 2 as well as the rings R and S, and
the field E, in the notation of the Theorem and its proof. (We also denote
the homomorphism RG → F by φ, as in the theorem.) The algebraic struc-
ture of R is independent of φ: it is simply the coordinate ring of GLn. The
differential structure of R is completely determined by the restriction α of φ
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to RGLn(C) = C{bo, . . . , bn−1}, that is it is determined by the elements φ(bi),
0 ≤ i ≤ n − 1, of F . The maximal differential ideals P of R are all conjugate
under the GLn(C) action [5, Theorem 4.17 p.50], which means that the quo-
tient R/P and its quotient field E are also determined by the φ(bi)’s. These
observations are making explicit the fact that a Picard–Vessiot extension like E
for Y (n) + φ(bn−1)Y (n−1) + · · · + φ(b1)Y (1) + φ(b0)Y = 0 is determined up to
isomorphism.

We can rephrase our main genericity results in terms of this equation as
follows:

1. If E ⊇ F is a Picard–Vessiot extension for an order n equation with
G(E/F ) = G, then E is a Picard–Vessiot extension for Y (n)+Φ(bn−1)Y (n−1)+
· · · + Φ(b1)Y (1) + Φ(b0)Y = 0, where Φ : R → E is a C algebra differen-
tial homomorphism with Φ(RG) ⊂ F , such that E is the quotient field of
Φ(R)F (first generic property of R); and

2. If φ : RG → F is any C algebra differential homomorphism and K is a
Picard–Vessiot extension of F for Y (n)+φ(bn−1)Y (n−1)+ · · ·+φ(b1)Y (1)+
φ(b0)Y = 0 then G(K/F ) is a subgroup of G and the induced homomor-
phism Φ : R → K has the property that K is the quotient field of Φ(R)F
(second generic property of R).

Thus one might consider Y (n) + bn−1Y
(n−1) + · · · + b1Y

(1) + b0Y = 0 as a
generic equation for G, whose specializations yield the Picard–Vessiot extensions
with group G. However, as we have seen, the allowable “specializations” φ(bi)
of the bi are those that come from differential homomorphisms φ : RG → F . To
describe these, suppose that ti, 1 ≤ i ≤ m are such that RG = C{t1, . . . , tm}.
We are not assuming that the ti are differentially independent; let S be a gen-
erating set for their differential relations. Then differential homomorphisms φ
on RG are specified by the m-tuple, (φ(t1), . . . , φ(tm)), and any m-tuple of el-
ements satisfying all the relations in S produces such a homomorphism. Since
bi ∈ RG, 0 ≤ i ≤ n − 1, we can express each bi as a differential polynomial
in the ti, say bi = fi(t1, . . . , tm). With these notations, we have the following
reformulation in the language of equations of our main results:

Theorem 3. Let G be a reductive subgroup of GLn(C). Suppose that RG is
generated by t1, . . . , tm, subject to the relations S. Let

Lt1,...,tm
= Y (n) +

n−1∑
0

fi(t1, . . . , tm)Y (i).

Then if E ⊇ F is a Picard–Vessiot extension of order n with group G, there are
elements ai, 1 ≤ i ≤ m satisfying the relations S such that E is a Picard–Vessiot
extension of F for La1,...,am

. Conversely, if ai, 1 ≤ i ≤ m is a set of elements
of F satisfying the relations S and K ⊇ F is a Picard–Vessiot extension for
La1,...,am then G(K/F ) is a subgroup of G.
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Note: because G is reductive, C[GLn]G is finitely generated as an algebra
over C. Since RG = C{b0, . . . , bn−1} ⊗ C[GLn]G, we have a finite set of differ-
ential generators t1, . . . , tm. For the set S, we can take a (set of generators for)
the kernel of a surjection C{T1, . . . , Tm} → RG where the Ti are differential
indeterminates and Ti 7→ ti. In the cases considered by [2] and [3], the set S
is essentially empty: those authors use elements ti of C〈y1, . . . , yn〉 such that
C〈y1, . . . , yn〉G = C〈t1, . . . , tn〉 which are differentiably independent. The ti’s
are quotients of elements of RG and for φ to be defined on them some conditions
apply.

Example 2. As an example of Theorem 3, we may consider the case that G =
SLn. Then C[GLn]G = C[det, det−1] so that RG = C{b0, . . . , bn−1, wn, w

−1
n }

But since bi = (−1)iwiw
−1
n , this means that RG is differentially generated over

C by w0, . . . , wn. We can consider w0, . . . , wn−1 as differential indeterminates.
For the Wronskian wn, we have the derivative formula w′

n = −bn−1wn [5, 2.4.2,
p. 16]; since bn−1 = (−1)n−1wn−1w

−1
n this means that w′

n = (−1)nwn−1. Thus
the set S consists of the single relation w′

n = (−1)nwn−1, plus the condition
that wn 6= 0. Or, to revert the notation of Theorem 3, with ti = wi−1, 1 ≤ i ≤
n + 1, and fi−1 = ti

tn+1
, if E ⊃ F is an order n Picard–Vessiot extension with

group SLn(C), then there are elements a1, . . . , an+1 of F with an+1 6= 0 and
a′n+1 = an such that E is a Picard–Vesiot extension for La1,...,an

. Conversely,
given any such elements of F , the Picard–Vessiot extension E of F for La1,...,an

has G(E/F ) a subgroup of SLn(C).
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