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Abstract. Boe, Kujawa and Nakano [BKN1, BKN2] recently investigated relative coho-
mology for classical Lie superalgebras and developed a theory of support varieties. The
dimensions of these support varieties give a geometric interpretation of the combinatorial
notions of defect and atypicality due to Kac, Wakimoto, and Serganova. In this paper we
calculate the cohomology ring of the Cartan type Lie superalgebra W (n) relative to the
degree zero component W (n)0 and show that this ring is a finitely generated polynomial
ring. This allows one to define support varieties for finite dimensional W (n)-supermodules
which are completely reducible over W (n)0. We calculate the support varieties of all sim-
ple supermodules in this category. Remarkably our computations coincide with the prior
notion of atypicality for Cartan type superalgebras due to Serganova. We also present new
results on the realizability of support varieties which hold for both classical and Cartan
type superalgebras.

1. Introduction

1.1. Let g = g0̄ ⊕ g1̄ be a finite dimensional simple Lie superalgebra over the complex
numbers C. In 1977 Kac provided a complete classification of these Lie superalgebras
(cf. [Kac]). The simple finite dimensional Lie superalgebras are divided into two types
based on their degree 0̄ part: they are either classical (when g0̄ is reductive) or of Cartan
type (otherwise). The Lie superalgebras of Cartan type consist of four infinite families of
superalgebras: W (n), S(n), S̃(n) and H(n).

Let us first summarize what is known for the classical Lie superalgebras [BKN1, BKN2].
The first fundamental result is that the relative cohomology ring H•(g, g0̄; C) is a finitely
generated commutative ring. Note that this result crucially depends on the reductivity of g0̄.
By applying invariant theory results in [LR] and [DK], it was shown under mild conditions
that a natural “detecting” subalgebra e = e0̄ ⊕ e1̄ of g arises such that the restriction map
in cohomology induces an isomorphism

R := H•(g, g0̄; C) ∼= H•(e, e0̄; C)W ,

where W is a finite pseudoreflection group. The vector space dimension of the degree 1̄
part of the detecting subalgebra and the Krull dimension of R both coincide with the com-
binatorial notion of the defect of g previously introduced by Kac and Wakimoto [KW]. The
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fact that R is finitely generated can be employed to define the cohomological support va-
rieties V(e,e0̄)(M) and V(g,g0̄)(M) for any finite dimensional g-supermodule M . The variety
V(e,e0̄)(M) can be identified as a certain subvariety of e1̄ using a rank variety description
[BKN1, Theorem 6.3.2]. For the Lie superalgebra g = gl(m|n) the support varieties of all
finite dimensional simple supermodules were computed in [BKN2]. A remarkable conse-
quence of this calculation is that the dimensions of the support varieties of a given simple
supermodule (over g or e) concides with the combinatorially defined degree of atypicality
of the highest weight as defined by Kac and Serganova.

1.2. In this paper we demonstrate that one can also use relative cohomology and support
varieties in the setting of the Cartan type superalgebra W (n). Recall that the Lie super-
algebra W (n) is the Lie superalgebra of superderivations of the exterior algebra Λ(n) on
n generators. Since Λ(n) = ⊕kΛk(n) has a natural Z-grading given by total degree, one
obtains a Z-grading on the Lie superalgebra, W (n) =

⊕n−1
i=−1 W (n)i, where D ∈ W (n) is

of degree i if D(Λk(n)) ⊆ Λi+k(n) for all k ∈ Z. The zero graded component W (n)0 is
isomorphic to gl(n) and W (n) ∼= Λ(V ) ⊗ V ∗ as a gl(n)-module, where V is the natural n
dimensional representation of gl(n).

The crucial difference between the Cartan type superalgebras and the classical superal-
gebras is that the g0̄ component is no longer reductive. However, as was described above
for W (n), the Cartan type Lie algebras of types W (n), S(n), and H(n) admit a Z-grading:
g = ⊕i∈Zgi. The grading is compatible with the Z2-grading in the sense that ⊕ig2i = g0̄ and
⊕ig2i+1 = g1̄. Furthermore, the bracket respects the grading (i.e. [gi, gj ] ⊆ gi+j for all inte-
gers i, j). In particular, g0 is a reductive Lie algebra under this bracket. It is then natural
to consider the category of g-supermodules which are finitely semisimple over g0. All finite
dimensional simple g-supermodules, for example, are objects in this category. Furthermore,
as we will see, the reductiveness of g0 implies the cohomology ring for this category is a
finitely generated algebra.

The paper is organized as follows. Set (g, g0) = (W (n),W (n)0) and G0
∼= GL(n) to be

the connected reductive group such that Lie(G0) = g0 and such that the action of G0 on g
differentiates to the adjoint action of g0 on g. In Sections 2 – 3 we briefly review basic facts
on relative cohomology proved in [BKN1] and on W (n) from [Ser] that will be needed for
this paper. Section 4 is devoted to applying these results to the pair (g, g0). In particular,
we use the representation theory of gl(n) to show in Theorem 4.3.1 that

R := H•(g, g0; C)

can be identified with a ring of invariants and, consequently, is finitely generated. We
also prove that when M is a finite dimensional g-supermodule, H•(g, g0;M) is a finitely
generated R-module. This proposition is the key first step to developing a theory of coho-
mological support varieties. In Section 5 we invoke invariant theory results due to Luna
and Richardson [LR] to construct a detecting subsuperalgebra f = f0̄ ⊕ f1̄ for g so that the
inclusion f ↪→ g induces the following isomorphism in cohomology,

R = H•(g, g0; C) ∼= H•(f, f0̄; C)Σn−1

where Σn−1 is the symmetric group on n − 1 letters. In particular this will imply R is a
polynomial ring in n−1 variables. We remark that there are some similarities in technique to
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Premet’s [Pr] earlier computation of the ring of invariant functions on the finite-dimensional
simple Lie algebra W (n, 1) over an algebraically closed field of positive characteristic.

Given a finite dimensional g-supermodule, M , one can use the aforementioned finite
generation results to define the cohomological support varieties V(g,g0)(M) and V(f,f0̄)(M).
The properties of these varieties are described in Section 6. We also provide computations
of these support varieties for all finite dimensional simple g-supermodules using the work of
Serganova [Ser]. Our results demonstrate that the dimension of these varieties geometrically
realize the combinatorial notion of atypicality due to Serganova. Finally, in Section 8 we
prove a general realization theorem for conical subvarieties of the spectrum of R which holds
in both the classical case and for W (n).

We remark that Duflo and Serganova introduce associated varieties for finite dimensional
supermodules of a Lie superalgebra in [DS]. Whether g is classical or W (n) it remains
unclear what connection, if any, exists between their work and the cohomological support
varieties considered in [BKN1, BKN2] and here.

1.3. Acknowledgements. The second author is grateful to the Mathematical Sciences
Research Institute for their support and hospitality during the preparation of this manu-
script.

2. Preliminaries

2.1. For further details on Lie superalgebras and relative cohomology we refer the reader
to [BKN1, §2]. Throughout we work with the complex numbers C as the ground field. A
finite dimensional Lie superalgebras is a Z2-graded vector space g = g0̄ ⊕ g1̄ with a bracket
operation [−,−] : g ⊗ g → g which preserves the Z2-grading and satisfies graded versions
of the usual axioms for a Lie bracket. In particular, note that g0̄ is a Lie algebra upon
restriction of the bracket. If g is a Lie superalgebra, then we denote by U(g) the universal
enveloping superalgebra of g. As a special case of this setup we always view a Lie algebra
as a Lie superalgebra concentrated in degree 0̄.

Given a Lie superalgebra g the category of g-supermodules has as objects the left U(g)-
modules which are Z2-graded and such that the action of U(g) respects this grading. By
definition a subsupermodule of a supermodule, say N ⊆ M, satisfies Nr = N ∩ Mr for
r ∈ Z2. Morphisms are as described in [BKN1, Section 2.1]; in particular, we do not assume
that morphisms preserve the Z2-grading. Consequently the category of g-supermodules is
not an abelian category. However the graded (or underlying even category), consisting of the
same objects but with only Z2-grading preserving morphisms, is an abelian category. This
along with the parity change functor (which interchanges the Z2-grading of a supermodule)
allows one to make use of the standard tools of homological algebra. Since U(g) is a Hopf
superalgebra one can use the antipode (resp. coproduct) of U(g) to define a g-supermodule
structure on the linear dual of a supermodule denoted by M∗ (resp. the tensor product of
two supermodules over C denoted by M ⊗N). As a matter of notation, for a homogeneous
element x in a Z2-graded vector space we write x̄ ∈ Z2 for the degree of the element. We
call x even if x̄ = 0̄ and odd if x̄ = 1̄.

If g is a Lie superalgebra, then a g-supermodule M is finitely semisimple if it is isomorphic
to a direct sum of finite dimensional simple g-supermodules. Let t be a Lie subsuperalgebra
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of g and let C = C(g,t) be the full subcategory of the category of all g-supermodules which
has its objects all g-supermodules which are finitely semisimple as t-supermodules. The
category C(g,t) is closed under arbitrary direct sums, quotients, and finite tensor products
(cf. [Kum, 3.1.6]). Given M and N in C, we write Extd

C(M,N) for the degree d extensions
between N and M in C.

2.2. Relative Cohomology for Lie superalgebras. In order to compute extensions in
C we use a concrete realization of the relative cohomology for Lie superalgebras. Let g be
a Lie superalgebra, t ⊆ g be a Lie subsuperalgebra, and M be a g-supermodule in C. For
p ≥ 0 set

Cp(g;M) = HomC(Λp
s(g),M),

where Λp
s(g) is the super wedge product. That is, Λp

s(g) is the p-fold tensor product of g
modulo the g-subsupermodule generated by elements of the form

x1 ⊗ · · · ⊗ xk ⊗ xk+1 ⊗ · · · ⊗ xp + (−1)xk xk+1x1 ⊗ · · · ⊗ xk+1 ⊗ xk ⊗ · · · ⊗ xp

for homogeneous x1, . . . , xp ∈ g. Therefore, xk, xk+1 skew commute unless both are odd in
which case they commute.

Let dp : Cp(g;M) → Cp+1(g;M) be given by the formula:

dp(φ)(x1 ∧ · · · ∧ xp+1) =
∑
i<j

(−1)σi,j(x1,...,xp)φ([xi, xj ] ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x̂j ∧ · · · ∧ xp+1)

+
∑

i

(−1)γ(x1,...,xp,φ)xiφ(x1 ∧ · · · ∧ x̂i ∧ · · · ∧ xp+1), (2.2.1)

where x1, . . . , xp+1 and φ are assumed to be homogeneous, and

σi,j(x1, . . . , xp) := i + j + xi(x1 + · · ·+ xi−1) + xj(x1 + · · ·+ xj−1 + xi),

γi(x1, . . . , xp, φ) := i + 1 + xi(x1 + · · ·+ xi−1 + φ).

Ordinary Lie superalgebra cohomology is then defined as

Hp(g;M) = Ker dp/Im dp−1.

The relative version of the above construction is given as follows. Define

Cp(g, t;M) = Homt(Λp
s(g/t),M).

Then the map dp induces a well defined map dp : Cp(g, t;M) → Cp+1(g, t;M) and we define

Hp(g, t;M) = Ker dp/Im dp−1.

2.3. Relating Cohomology Theories. Let R be an associative superalgebra and S a
subsuperalgebra. Given R-supermodules M and N one can define cohomology with re-
spect to the pair (R,S) which we denote by Ext•(R,S)(M,N) (cf. [BKN1, Section 2.2]). In
particular, if t is a Lie subsuperalgebra of g then one can define cohomology for the pair
(U(g), U(t)). The following proposition relates the relative cohomology with the cohomol-
ogy theories of (U(g), U(t)) and C(g,t). The proof follows from [BKN1, Proposition 2.4.1];
see also [Kum] for the case of ordinary Lie algebras.
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Proposition 2.3.1. Let t be a Lie subsuperalgebra of g, and M,N be g-supermodules in
C = C(g,t) and assume that g is finitely semisimple as a t-supermodule under the adjoint
action. Then,

(a) Ext•(U(g),U(t))(M,N) ∼= Ext•(U(g),U(t))(C,HomC(M,N)) ∼= H•(g, t; HomC(M,N));
(b) Ext•C(M,N) ∼= Ext•(U(g),U(t))(M,N).

3. Representation Theory and Atypicality for W (n)

3.1. We begin by recalling the definition of the simple Lie superalgebras of type W (n). As
a background source we refer the reader to [Kac, Sch, Ser].

Assume that n ≥ 2. The Lie superalgebra W (n) may be described as follows. Let Λ(n)
be the exterior algebra of the vector space V = Cn. The algebra Λ(n) = ⊕n

k=0Λ
k(n) is

an associative superalgebra of dimension 2n with a Z-grading given by total degree. The
Z2-grading is inherited from the Z-grading by setting Λ(n)0̄ = ⊕kΛ2k(n) and Λ(n)1̄ =
⊕kΛ2k+1(n).

A (homogeneous) superderivation of Λ(n) is a linear map D : Λ(n) → Λ(n) which satisfies
D(xy) = D(x)y + (−1)D xxD(y) for all homogenous x, y ∈ Λ(n). Set W (n) to be the
vector space of all superderivations of Λ(n). Then W (n) is a Lie superalgebra via the
supercommutator bracket. Furthermore, W (n) inherits a Z-grading,

W (n) = W (n)−1 ⊕W (n)0 ⊕ · · · ⊕W (n)n−1,

from Λ(n) by setting W (n)k to be the superderivations which increase the degree of a homo-
geneous element by k. The Z2-grading on W (n) is obtained from the Z-grading by setting
W (n)0̄ = ⊕kW (n)2k and W (n)1̄ = ⊕kW (n)2k+1. One can verify that [W (n)k,W (n)l] ⊆
W (n)k+l for all k, l ∈ Z. Most importantly this implies W (n)0 is a Lie algebra and W (n)k

(k = −1, . . . , n− 1) is a W (n)0-module under the adjoint action.
Every element of W (n) restricts to a linear map V → Λ(n). Conversely every element of

W (n) arises in this way and so one has an isomorphism of vector spaces

W (n) ∼= Λ(n)⊗ V ∗.

This identification will be useful for computations. Fix an ordered basis {ξ1, . . . , ξn} for
V . For each ordered subset I = {i1, . . . , is} of N = {1, . . . , n} with i1 < i2 < · · · < is, let
ξI = ξi1ξi2 · · · ξis . The set of all such ξI forms a basis for Λ(n). For 1 ≤ i ≤ n let ∂i be the
element of W (n) such that ∂i(ξj) = δij . An explicit basis for Λ(n) ⊗ V ∗ is then given by
the set of all ξI ⊗ ∂i, where here we identify ∂i with its restriction to V . We shall write ξI∂i

instead of ξI ⊗ ∂i. We use the isomorphism above to identify W (n) and Λ(n)⊗ V ∗.
In particular, one has W (n)0 ∼= V ⊗ V ∗ ∼= gl(n) and the element ξi∂j corresponds to the

matrix unit ei,j (i.e. the matrix with a one in the (i, j) position and zeros elsewhere). Also
W (n)−1

∼= V ∗ as a W (n)0-module. In general the basis elements ξI∂i belonging to W (n)k

are those with |I| = k + 1. Thus dimC W (n)k = n
(

n
k+1

)
and dimC W (n) = n2n.

With the exception of Section 8 we use the following notational conventions throughout.
Set g = W (n) with gi = W (n)i, i ∈ Z, and gī = W (n)̄i, ī ∈ Z2. Moreover, let g+ =
g1 ⊕ · · · ⊕ gn−1 and g− = g−1, so that g has the lopsided triangular decomposition

g = g− ⊕ g0 ⊕ g+.
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Throughout the paper all g-supermodules will be assumed to be objects in the category
C = C(g,g0).

3.2. Kac supermodules and Finite Dimensional Simple g-supermodules. Fix the
maximal torus h ⊆ g0 consisting of diagional matrices and the Borel subalgebra b0 of g0

consisting of upper triangular matrices. Let X+
0 ⊂ h∗ denote the parametrizing set of

highest weights for the simple finite dimensional g0-modules with respect to the pair (h, b0)
and let L0(λ) denote the simple finite dimensional g0-module with highest weight λ ∈ X+

0 .
We view L0(λ) as a g0-supermodule concentrated in degree 0̄.

The Kac supermodule K(λ) is the induced representation of g,

K(λ) = U(g)⊗U(g0⊕g+) L0(λ),

where L0(λ) is viewed as a g0⊕g+ via inflation through the canonical quotient map g0⊕g+ →
g0. By the PBW theorem for Lie superalgebras the supermodule K(λ) is a finite dimensional
indecomposable object in C(g,g0). With respect to the choice of Borel subalgebra b0⊕g+ ⊆ g

one has a dominance order on weights. With respect to this ordering K(λ) has highest
weight λ and, therefore, a unique simple quotient which we denote by L(λ). Conversely,
every finite dimensional simple supermodule appears as the head of some Kac supermodule
(cf. [Ser, Theorem 3.1]).

From our discussion above one observes that the set

{L(λ) | λ ∈ X+
0 }

is a complete irredundant collection of simple finite dimensional g-supermodules.

3.3. Root Decomposition. Recall from the previous section that we fixed a maximal
torus h ⊆ g0 ⊆ g. With respect to this choice we have a root decomposition

g = h⊕
⊕
α∈Φ

gα.

Many properties of root decompositions for semisimple Lie algebras do not hold in our case.
For example, a root can have multiplicity bigger than one, and α ∈ Φ does not imply that
−α ∈ Φ. Still any root space gα is concentrated in either degree 0̄ or degree 1̄ and in this
way one can define a natural parity function on roots.

Let us describe the roots. We choose the standard basis ε1, . . . , εn of h∗ where εi(ξj∂j) =
δi,j for all 1 ≤ i, j ≤ n. Then the root system of g is the set

Φ = {εi1 + · · ·+ εik − εj | 1 ≤ i1 < · · · < ik ≤ n, 1 ≤ j ≤ n}.
The set of simple roots for g is

4 = {ε1 − ε2, . . . , εn−1 − εn}.

3.4. Typical and Atypical Weights. We consider Borel subalgebras b of g containing
b0. Among such subalgebras we distinguish bmax = b0 ⊕ g+ and bmin = b0 ⊕ g−. Let b
denote either bmax or bmin. Then λ ∈ h∗ defines a one dimensional representation of b which
we denote by Cλ. The induced supermodule Mb(λ) = U(g) ⊗U(b) Cλ has a unique proper
maximal submodule. We denote the unique irreducible quotient by Lb(λ). In particular, if
λ ∈ X+

0 , then L(λ) ∼= Lbmax(λ).
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Denote by λ′ the weight such that Lbmin(λ′) ∼= L(λ). Let Φ(g−1) be the set of roots which
lie in g−1. By Serganova [Ser, Lemma 5.1],

λ′ = λ +
∑

α∈Φ(g−1)

α (3.4.1)

for a Zariski open set of λ ∈ h∗. Here Φ(g−1) denotes the set of weights of g−1. Following
Serganova, we call λ ∈ h∗ typical if (3.4.1) holds for λ and otherwise λ is atypical. Serganova
determines a necessary and sufficient combinatorial condition for λ to be typical. Namely,
by [Ser, Lemma 5.3] one has that the set of atypical weights for g is

Ω = {aεi + εi+1 + · · ·+ εn ∈ h∗ | a ∈ C, 1 ≤ i ≤ n}.
In particular, one has

Ω ∩X+
0 = {aε1 + · · ·+ εn | a = 1, 2, 3, . . . } ∪ {bεn | b = 0,−1, . . . }.

4. Cohomology in C(g,g0)

4.1. The goal of this section is to compute the cohomology ring R = H•(g, g0; C). The
main result is Theorem 4.3.1 which shows that R can be identified with a ring of invariants.
Consequently one sees that R is finitely generated and H•(g, g0;M) is a finitely generated
R-module for any finite dimensional g-supermodule M.

4.2. We begin by showing that the calculation of g0-invariants on Λ•
s((g/g0)∗) reduces to

looking at g0-invariants on Λ•
s

(
g∗−1 ⊕ g∗1

)
. This will be accomplished by using information

from the representation theory of g0
∼= gl(n).

Theorem 4.2.1. Let g = W (n) and let p ≥ 0. Then, Λp
s((g/g0)∗)g0 ∼= Λp

s(g∗−1 ⊕ g∗1)
g0

Proof. First observe that g/g0
∼= g−1 ⊕ g1 ⊕ g2 ⊕ · · · ⊕ gn−1 as g0-modules. We then have

Λp
s(g

∗
−1 ⊕ g∗1⊕g∗2 ⊕ · · · ⊕ g∗n−1)

g0

∼=
⊕ (

Λi−1
s (g∗−1)⊗ Λi1

s (g∗1)⊗ Λi2
s (g∗2)⊗ · · · ⊗ Λin−1

s (g∗n−1)
)g0

∼=
⊕

Homg0

(
C,Λi−1

s (g∗−1)⊗ Λi1
s (g∗1)⊗ Λi2

s (g∗2)⊗ · · · ⊗ Λin−1
s (g∗n−1)

)
∼=

⊕
Homg0

(
Λi−1

s (g−1),Λi1
s (g∗1)⊗ Λi2

s (g∗2)⊗ · · · ⊗ Λin−1
s (g∗n−1)

)
where the direct sums are taken over all nonnegative integers i−1, i1, . . . , in−1 such that
i−1 + i1 + · · ·+ in−1 = p.

Recall that g−1 is isomorphic to the dual of the natural g0-module and, since g−1 is
concentrated in degree 1̄, one has Λi−1

s (g−1) ∼= Si−1(g−1) as g0-modules. It is well known
that symmetric powers of the dual of the natural module are simple (cf. [Jan, II 2.16]) and
so Λi−1

s (g−1) is a simple g0-module with highest weight

µ = (µ1, . . . , µn) = (0, . . . , 0,−i−1).

Since g∗k
∼= Λk+1(V ∗)⊗V (−1 ≤ k ≤ n−1), where V is the natural g0-module, and since

Λk+1(V ∗) (resp. V ) are simple g0-modules with highest weights (0, . . . , 0,−1, . . . ,−1) (resp.
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(1, 0, . . . , 0)), the highest weight of g∗k will be the sum of these two weights, (1, 0, . . . , 0,−1, . . . ,−1).
Therefore the largest possible weight that could occur in the weight space decomposition of
the g0-module

A := (g∗1)
⊗i−1 ⊗ (g∗2)

⊗i2 ⊗ · · · ⊗ (g∗n−1)
⊗in−1

is

λ = (λ1, . . . , λn)
= (i1, 0, . . . , 0,−i1,−i1) + (i2, 0, . . . , 0,−i2,−i2,−i2) + · · ·+ (0,−in−1, . . . .,−in−1)

= (Σn−1
t=−1it,−in−1,−in−2 − in−1, . . . ,−Σn−1

t=−2it,−Σn−1
t=−1it,−Σn−1

t=−1it).

If the Hom-space

Homg0(Λ
i−1
s (g−1),Λi1

s (g∗1)⊗ Λi2
s (g∗2)⊗ · · · ⊗ Λin−1

s (g∗n−1)) (4.2.1)

is non-zero, then the weight µ occurs in the weight space decomposition of the g0-module
A. However, if µ occurs in the weight space decomposition of this g0-module, then it has
to be less than or equal to λ in the dominance order; that is, Σk

i=1µi ≤ Σk
i=1λi for all k > 0.

By considering this inequality when k = n− 1 one obtains

0 ≤ −i2 − 2i3 − · · · − (n− 2)in−1.

Thus the Hom space in (4.2.1) is nonzero only when i2 = i3 = · · · = in−1 = 0. This gives
the stated result. �

4.3. Calculation of H•(g, g0; C). The previous theorem can be used to show that the
cohomology ring H•(g, g0; C) can be identified with a ring of invariants. Recall that G0

∼=
GL(n) denotes the connected reductive group such that Lie(G0) = g0 and the adjoint action
of G0 on g differentiates to the adjoint action of g0 on g.

Theorem 4.3.1. Let g = W (n). Then,

H•(g, g0; C) ∼= S((g−1 ⊕ g1)∗)g0 = S((g−1 ⊕ g1)∗)G0 .

Proof. By Theorem 4.2.1 one has

Cp(g, g0; C) = Homg0(Λ
p
s(g/g0), C)

∼= Λp
s ((g/g0)∗)

g0

∼= Λp
s

(
g∗−1 ⊕ g∗1

)g0

∼= Homg0(Λ
p
s(g−1 ⊕ g1), C).

Now observe that in this case the differential dp in (2.2.1) is identically zero. Namely, in the
first sum of (2.2.1) each [xi, xj ] is zero in the quotient g/g0 since the bracket preserves the
Z-grading and the terms in the second sum of (2.2.1) are zero since here M is the trivial
supermodule.

As a consequence the cohomology can be identified with the cochains. It remains to
observe that since g−1 ⊕ g1 is concentrated in degree 1̄, one has

Cp(g, g0; C) ∼= Λp
s ((g−1 ⊕ g1)∗)

g0 ∼= Sp ((g−1 ⊕ g1)∗)
g0 = Sp ((g−1 ⊕ g1)∗)

G0 .

�
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4.4. Finite Generation Results. Let M be a finite dimensional g-supermodule. By
using the Yoneda product H•(g, g0;M) is a module for the cohomology ring R. A result
from invariant theory shows that this module is finitely generated over R.

Theorem 4.4.1. Let M be a finite dimensional g-supermodule. Then,

(a) The superalgebra H•(g, g0; C) is a finitely generated commutative ring;
(b) The cohomology H•(g, g0;M) is finitely generated as an H•(g, g0; C)-module.

Proof. Since G0
∼= GL(n) is reductive, (a) follows from Theorem 4.3.1 and the classical

invariant theory result of Hilbert [PV, Theorem 3.6].
(b) Observe that

HomC(Λ•
s(g/g0),M) ∼= Λ•

s((g/g0)∗)⊗M

∼= Λ•
s(g

∗
1̄)⊗ Λ•

s((g0̄/g0)∗)⊗M

= S(g∗1̄)⊗ Λ•
s((g0̄/g0)∗)⊗M

is finitely generated as a S(g∗
1̄
)-module (under left multiplication) since Λ•

s((g0̄/g0)∗) ⊗M
is finite dimensional. Since S(g∗

1̄
) is a finitely generated commutative G0-algebra, one can

invoke [PV, Theorem 3.25] to see that

HomC(Λ•
s(g/g0),M)G0 = HomG0(Λ

•
s(g/g0),M) = C•(g, g0;M)

is finitely generated as a S(g∗
1̄
)G0 = Λ•

s(g
∗
1̄
)G0 ∼= H•(g, g0; C)-module. One can now argue

as in the proof of [BKN1, Theorem 2.5.3] to infer that H•(g, g0;M) is a finitely generated
H•(g, g0; C)-module. �

5. Invariant Theory Calculations

5.1. Recall from Theorem 4.3.1 that

R = H•(g, g0; C) ∼= S ((g−1 ⊕ g1)∗)
g0 . (5.1.1)

Thus to compute R it suffices to compute the invariant ring on the right hand side of (5.1.1).
To do so we use a result of Luna and Richardson [LR]. First we require certain preliminaries.

5.2. If G is an algebraic group which acts on a variety X, then we write g.x for the action
of g ∈ G on the element x ∈ X. Set

StabG(x) = {g ∈ G | g.x = x},
the stabilizer of x. An element x ∈ X is semisimple if the orbit G.x is closed in X. An
element x ∈ X is said to be regular if the dimension of the orbit G.x is of maximal possible
dimension among all orbits. Equivalently, x is regular if the dimension of StabG(x) is of
minimal dimension among all stabilizer subgroups.

The group G0
∼= GL(n) acts on g by the adjoint action and its action preserves the

Z-grading of g. Let
β : g−1 ⊕ g1 → g0

be the G0-equivariant map given by β(x + y) = [x, y] for all x ∈ g−1 and y ∈ g1.

Fix T ⊆ G0 to be the maximal torus consisting of all diagonal matrices. Then h = Lie (T ) ,
the Cartan subalgebra we fixed in Section 3.
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The following lemma summarizes some well known results about the adjoint action of G0

on g0. See, for example, [CM, Hum].

Lemma 5.2.1. Let h ∈ h. Then,

(a) The element h is regular if and only if StabG0(h) = T ;
(b) The element h is regular if and only if all the eigenvalues of h are pairwise distinct

elements of C;
(c) An element x ∈ g0 is semisimple if and only if it is G0-conjugate to an element of

h;
(d) An element of x ∈ g0 is semisimple and regular if and only if it is G0-conjugate to

a regular element of h;
(e) The semisimple regular elements of g0 form a dense open set in g0.

We leave it to the reader to verify the following basic observations.

Lemma 5.2.2. Let G be an algebraic group acting on the varieties X and Y. Let f : X → Y
be a G-equivariant map. Then the following statements hold true.

(a) If y ∈ Y and x ∈ f−1(y), then

StabG(x) ⊆ StabG(y).

(b) If y ∈ Y, then
G.f−1(y) = f−1 (G.y) .

In particular, if x ∈ f−1(y), then G.x ⊆ f−1(G.y).

5.3. We saw in Section 3 that g−1
∼= V ∗ as a g0-module and has basis ∂i, g0 has basis ξi∂j ,

and g1 = Λ2(V ) ⊗ V ∗ with basis ξiξj∂k (with i < j), where 1 ≤ i, j, k ≤ n. Recall that
the isomorphism g0

∼= gl(n) is given by ξi∂j ↔ ei,j , where ei,j is the (i, j) matrix unit. In
particular, h is spanned by the set {ξi∂i | 1 ≤ i ≤ n}.

Lemma 5.3.1. Let h ∈ h be a semisimple regular element and write

h =
n∑

i=1

ciξi∂i,

with ci ∈ C. One then has the following.

(a) If c1, . . . , cn are all nonzero, then β−1(h) = ∅.
(b) If c1 = 0 and x ∈ β−1(h), then

x = a1∂1 +
n∑

l=2

cl

a1
ξ1ξl∂l +

∑
r,s,t

1<r<s

br,s,tξrξs∂t, (5.3.1)

where a1, br,s,t ∈ C and a1 6= 0.

Proof. We only sketch the calculation here. First, let x ∈ β−1(h) and write x ∈ g−1 ⊕ g1 in
our preferred basis:

x =
∑

i

ai∂i +
∑
i,j,k
i<j

bi,j,kξiξj∂k. (5.3.2)
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By a direct calculation of β(x), one sees that if at 6= 0 for some 1 ≤ t ≤ n, then necessarily
ct = 0. Therefore, if all the coeffients of h are nonzero, then there is no x such that
β(x) = h. This proves part (a). Now say c1 = 0. Since h is regular, c2, . . . , cn are all nonzero
by Lemma 5.2.1(b). But then by the proof of part (a) one has a2 = · · · = an = 0. This
observation simplifies the calculation of β(x). Doing so and using that the image is equal
to h, one obtains (5.3.1). �

Proposition 5.3.1. Let h ∈ h be a semisimple regular element as in part (b) of the previous
lemma. Let x0 ∈ β−1(h) be chosen so that all the coefficents br,s,t are zero in (5.3.1). Then
x0 ∈ g−1 ⊕ g1 is a semisimple element.

Proof. First one computes StabG0(x) for any x ∈ β−1(h). By Lemma 5.2.2 and Lemma 5.2.1(a)
one has StabG0(x) ⊆ StabG0(h) = T. By part (b) of the previous lemma x is a linear combi-
nation of distinct weight vectors. From this one sees that t = diag(t1, . . . , tn) ∈ T fixes x if
t1 = 1. This is also sufficient in the case of x0. Otherwise there will be additional contraints
on t and the stabilizer will be a proper, smaller dimensional subgroup of

Tn−1 := {t = diag(t1, . . . , tn) ∈ T | t1 = 1}. (5.3.3)

Thus x0 has maximal stabilizer dimension and, hence, minimal orbit dimension in the closed
set β−1(G.h). It follows that G.x0 must be closed. �

5.4. Let G be a reductive algebraic group acting on an affine variety X. Let π : X → X/G
be the canonical quotient map. An element ζ ∈ X/G is said to be principal if there is an
open neighborhood U such that ζ ∈ U ⊆ X/G and for any semisimple x, y ∈ π−1(U), the
groups StabG(x) and StabG(y) are conjugate in G [LR, Definition 3.2, Remark 3.3]. Let
(X/G)pr denote the set of principal elements of X/G. By [LR, Lemma 3.4] (X/G)pr is a
nonempty, dense, open subset of X/G.

Let

π : g−1 ⊕ g1 → (g−1 ⊕ g1)/G0 and p : g0 → g0/G0

denote the canonical quotient morphisms. Let ϕ : (g−1⊕g1)/G0 → g0/G0 be the morphism
induced by the map p ◦ β : g−1 ⊕ g1 → g0/G0. That is, the following diagram commutes.

g−1 ⊕ g1 g0 g0/G0

(g−1 ⊕ g1)/G0

- -

? ���������������:

β p

π
ϕ

We observe that it follows from Lemma 5.2.1 that the set (g0/G0)pr is precisely the image
under p of the semisimple regular elements of h.

Proposition 5.4.1. Let x0 ∈ g−1⊕g1 be as in Proposition 5.3.1. Then π(x0) is a principal
element of (g−1 ⊕ g1)/G0.
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Proof. Let U := ϕ−1 ((g0/G0)pr). By definition, β(x0) is semisimple and regular, so p(β(x0)) =
ϕ(π(x0)) is principal in g0/G0. That is, π(x0) ∈ U. Therefore U is a nonempty open neigh-
borhood of π(x0) in (g−1 ⊕ g1)/G0. Let ζ ∈ U and let y ∈ g−1 ⊕ g1 be a semisimple
element in π−1(ζ). Then ϕ(π(y)) = p(β(y)), so β(y) ∈ p−1(η) for some principal η ∈ g0/G0.
But then η = p(h) for some semisimple regular h ∈ h. However since h is semisimple and
regular, it follows that p−1(η) = G0.h. That is, up to G0-conjugacy one can assume β(y)
is a semisimple regular element of h. However this implies that y is of the form given in
Lemma 5.3.1 and the stabilizer of such elements was computed in the proof of Lemma 5.3.1.
By that calculation and the fact that y is semisimple one sees that the stabilizer of y is
Tn−1. Therefore all semisimple elements in the fibers of U have stabilizer conjugate to Tn−1

and so x0 is principal. �

5.5. The stage is now set to apply the results of Luna and Richardson [LR, Corollary 4.4]
to calculate R. To do so requires certain preliminary calculations. Let x0 ∈ g−1⊕ g1 be the
semisimple element fixed in the previous section.

Let
H = StabG0(x0) = Tn−1, (5.5.1)

where the last equality is by the calculations made in the proof of Proposition 5.3.1. Let

N = NormG0(H) =
{
g ∈ G0 | gHg−1 = H

}
. (5.5.2)

Let us first calculate the group N.

Lemma 5.5.1. Let N = NormG0(H). Recall that T is the torus of G0. Let Σn be the
permutation matrices of G0 and let Σn−1 be the permutation matrices which normalize
Tn−1. Then,

N = TΣn−1.

Proof. The first step is to prove that N ⊆ NormG0(T ). Fix a semisimple regular element
t0 ∈ Tn−1 (for the action of G0 on itself by conjugation). Then T = StabG0(t0). Let n ∈ N .
We claim that nTn−1 fixes t0, hence nTn−1 = T , hence n ∈ NormG0(T ). Let t ∈ T and
consider

(ntn−1)t0(ntn−1)−1 = ntn−1t0nt−1n−1.

However, since t0 ∈ Tn−1 and n−1 ∈ NormG0(Tn−1), one has that n−1t0n ∈ Tn−1 ⊆ T ; since
t ∈ T and T fixes T pointwise under conjugation, one has tn−1t0nt−1 = n−1t0n. Thus,

ntn−1t0nt−1n−1 = nn−1t0nn−1 = t0.

Therefore, ntn−1 ∈ StabG0(t0) = T. That is, as discussed above, n ∈ NormG0(T ) = TΣn.

One can now verify that T fixes H pointwise, and that the elements of Σn which stabilize
H are precisely Σn−1. �

We next need to calculate f1̄ := (g−1 ⊕ g1)H .

Lemma 5.5.2. The subvariety f1̄ = (g−1 ⊕ g1)H is the C-span of the vectors

{∂1, ξ1ξi∂i | i = 2, . . . , n}.
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Proof. Since H = Tn−1, f1̄ is simply the span of all weight zero vectors with respect to this
torus. Using the fixed basis of weight vectors for g−1⊕ g1 established in Section 2 it can be
seen that f1̄ is spanned by the given vectors. �

5.6. Explicit Description of H•(g, g0; C). We can now give an explicit description of the
cohomology ring R. Let Yi ∈ f∗

1̄
be given by Yi(ξ1ξj∂j) = δi,j (i, j = 2, . . . , n) and Yi(∂1) = 0.

Let ∂∗1 ∈ f∗
1̄

be given by ∂∗1(ξ1ξj∂j) = 0 for all j = 2, . . . , n and ∂∗1(∂1) = 1.

Theorem 5.6.1. Restriction of functions defines an isomorphism,

H•(g, g0; C) ∼= S(f∗1̄)
N = C[Y2∂

∗
1 , . . . , Yn∂∗1 ]Σn−1 ,

where Σn−1 acts on Y2∂
∗
1 , . . . , Yn∂∗1 by permutations. In particular, R is a polynomial ring

in n− 1 variables of degree 2, 4, . . . , 2n− 2.

Proof. The first isomorphism follows from (5.1.1) and [LR, Corollary 4.4]. Namely, x0 ∈
g−1 ⊕ g1 is a semisimple element with π(x0) a principal element of (g−1 ⊕ g1)/G0 so it
follows by [LR, Corollary 4.4] that restriction of functions defines an isomorphism between
S((g−1 ⊕ g1)∗)G0 and S(f∗

1̄
)N . Since T is a normal subgroup of N, one can first compute

that S•(f∗
1̄
)T = C[Y2∂

∗
1 , . . . , Yn∂∗1 ] and check that Σn−1 acts on this ring by permuting the

variables. �

5.7. Detecting Subalgebra for W (n). In [BKN1, Section 8] it was shown that the simple
classical Lie superalgebras have either a polar or stable action of G0̄ on g1̄. As a consequence
of this phenomenon one can show that there exists Lie subsuperalgebras such that the
restriction homomorphism identifies the cohomology ring of g with the invariants of the
cohomology ring of the detecting subalgebra under the action of some finite pseudoreflection
group. In the case of g = W (n), the action of G0 on g/g0 is neither polar nor stable.
Nevertheless, one can construct a similar detecting subalgebra for g.

Let f1̄ = (g−1 ⊕ g1)H ⊂ g1̄ be the subspace calculated in Lemma 5.5.2 and let

f0̄ = Lie(N) = Lie(T ) = h ⊂ g0̄.

One can verify by direct calculation that

[fr, fs] ⊆ fr+s (5.7.1)

for all r, s ∈ Z2. Thus f = f0̄ ⊕ f1̄ is a Lie subsuperalgebra of g which we call a detecting
subalgebra of g. By [LR, Lemma 2.5] f is unique up to conjugacy in the sense that if one
chooses another semisimple x ∈ g−1 ⊕ g1 such that π(x) is principal, then following the
aforementioned construction leads to a detecting subalgebra which is G0-conjuate to f.

5.8. Applying the definition of relative cohomology in Section 2.2 one can calculate H•(f, f0̄; C)
as follows. First, note that the Z2-grading implies that the differentials defining H(f, f0̄; C)
are identically zero (cf. the proof of [BKN1, Theorem 2.5.2]). Thus the cohomology is given
by the cochains; that is,

H(f, f0̄; C) ∼= S
(
f∗1̄

)f0̄ .
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Furthermore, note that the elements of S(f∗
1̄
) which are invariant under f0̄ are simply those of

weight zero with respect to the torus T. Therefore, recalling that S(f∗
1̄
) ∼= C[∂∗1 , Y2, . . . , Yn],

one has
H(f, f0̄; C) ∼= S

(
f∗1̄

)T = C[Y2∂
∗
1 , . . . , Yn∂∗1 ].

The following theorem relates the g and f cohomology rings via the natural restriction
map. As in the classical case [BKN1], one has that they are related via the invariants of a
finite reflection group.

Theorem 5.8.1. Let g = W (n) and let f be the detecting superalgebra defined above. The
inclusion map f ↪→ g induces a restriction map res : H•(g, g0; C) → H•(f, f0̄; C) so that the
following diagram commutes:

H•(g, g0; C)
res

−−−−→ H•(f, f0̄; C)

∼=
y y∼=

C[Y2∂
∗
1 , . . . , Yn∂∗1 ]Σn−1

⊆
−−−−→ C[Y2∂

∗
1 , . . . , Yn∂∗1 ]

(5.8.1)

That is, the restriction map induced by inclusion gives the following graded algebra iso-
morphism,

H(g, g0; C)
∼=−→ H(f, f0̄; C)Σn−1 ∼= C[Y2∂

∗
1 , . . . , Yn∂∗1 ]Σn−1 .

In particular, both H(g, g0; C) and H(f, f0̄; C) are isomorphic to graded polynomial rings in
n− 1 variables.

Proof. The isomorphisms are a reinterpretation of Theorem 5.6.1 in terms of cohomology
and the commutativity of the diagram can be checked directly. �

6. Support varieties

6.1. Support Varieties. Let (a, a�) denote one of the pairs (g, g0), (f, f0̄). Let M and N
be objects of C := C(a,a�) such that

Ext•C(M,N) ∼= H•(a, a�; HomC(M,N))

is finitely generated as an H(a, a�; C)-module; e.g. when M and N are finite dimensional by
Theorem 4.4.1 for (g, g0) and by [BKN1, Theorem 2.5.3] for (f, f0̄) (since f is a classical Lie
superalgebra). Let

I(a,a�)(M,N) = AnnH•(a,a�;C)(H
•(a, a�; HomC(M,N)))

be the annihilator ideal of this module. The support variety of the pair (M,N) is defined
to be

V(a,a�)(M,N) = MaxSpec(H•(a, a�; C)/I(a,a�)(M,N)),

the maximal ideal spectrum of the quotient of H•(a, a�; C) by I(a,a�)(M,N). In particular,
when M = N , the support variety of M is

V(a,a�)(M) = MaxSpec(H•(a, a�; C)/I(a,a�)(M,M)).
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In light of the calculations in the previous section V(a,a�)(M) can be identified with the
conical affine subvariety of

MaxSpec(H(a, a�; C)) = V(a,a�)(C) ∼= An−1,

defined by the ideal I(a,a�)(M,M). For brevity in what follows we write

I(a,a�)(M) = I(a,a�)(M,M).

6.2. The inclusion f ↪→ g induces a restriction map on cohomology which, in turn, induces
maps of support varieties. That is, given supermodules M and N in C(g,g0) one has M,N ∈
C(f,f0̄) by restriction to f and one has maps of varieties

res∗ : V(f,f0̄)(M,N) → V(g,g0)(M,N),

res∗ : V(f,f0̄)(M) → V(g,g0)(M).

Viewing the support varieties as subvarieties of An−1 and using Theorem 5.8.1 one can
explicitly describe this map as the quotient by the action of Σn−1 on An−1 by permutation
of coordinates. Therefore one has

V(f,f0̄)(M)/Σn−1
∼= res∗

(
V(f,f0̄)(M)

)
⊆ V(g,g0)(M). (6.2.1)

We conjecture that the inclusion in (6.2.1) is in fact an equality for all finite dimensional
g-supermodules M ∈ C(g,g0).

6.3. Rank Varieties. An important motivation for introducing the detecting subalgebra f
is that one can describe its support varieties using the theory of rank varieties. However, the
situation is markedly different than for the classical Lie superalgebras. To demonstrate these
differences and make the relationship precise we introduce another Lie subsuperalgebra of
g.

Let f̃0̄ = Lie(H) ⊂ g0 and f̃1̄ = f1̄. Set

f̃ = f̃0̄ ⊕ f̃1̄. (6.3.1)

As with f one can verify that f̃ is a Lie subsuperalgebra of g. In fact one has[̃
f0̄, f̃0̄

]
=

[̃
f0̄, f̃1̄

]
= 0. (6.3.2)

One can also verify that the differentials defining H(̃f, f̃0̄; C) are identically zero and so the
cohomology ring is again given by the cochains. In this case, however, f̃0̄ acts trivially on
f̃1̄ and so one has

H(̃f, f̃0̄; C) ∼= S(̃f∗1̄) = S
(
f∗1̄

) ∼= C[∂∗1 , Y2, . . . , Yn].

Furthermore, the inclusion f̃ ↪→ f defines a restriction map, res, so that the following diagram
commutes,

H•(f, f0̄; C)
res

−−−−→ H•(̃f, f̃0̄; C)

∼=
y y∼=

C[∂∗1Y2, . . . , ∂
∗
1Yn]

⊆
−−−−→ C[∂∗1 , Y2, . . . , Yn]

(6.3.3)
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By using the pair (a, a�) = (̃f, f̃0̄) and the setup of Section 6.1 one can define the sup-
port varieties V(̃f,̃f0̄)(M,N) and V(̃f,̃f0̄)(M) for any supermodules M,N ∈ C(̃f,̃f0̄) for which

Ext•C(̃f,̃f0̄)
(M,N) and Ext•C(̃f,̃f0̄)

(M,M) are finitely generated H•(̃f, f̃0̄; C)-modules. Since

H(̃f, f̃0̄; C) is a polynomial ring in n variables, one can naturally identify these support
varieties with the conical affine subvarieties of the affine n-space

MaxSpec
(
H(̃f, f̃0̄; C)

)
= V(̃f,̃f0̄)(C) ∼= An

defined by the ideals I(̃f,̃f0̄)(M,N) and I(̃f,̃f0̄)(M), respectively.

Alternatively, one can describe the f̃ support variety using rank varieties. As a matter
of notation, given a homogeneous element x ∈ f̃, let 〈x〉 denote the Lie subsuperalgebra
generated by x. If M ∈ C(̃f,̃f0̄) is finite dimensional then define the rank variety of M to be

Vrank
f̃

(M) =
{

x ∈ f̃1̄ = f1̄ | M is not projective as a U (〈x〉)-supermodule
}
∪ {0}.

Since by (6.3.2) the structure of f̃ is of the type considered in [BKN1, Sections 5, 6],
[BKN1, Theorem 6.3.2] implies that one has a canonical isomorphism

V(̃f,̃f0̄)(M) ∼= Vrank
f̃

(M) (6.3.4)

for any finite dimensional f̃-supermodule M which is an object of C(̃f,̃f0̄). We identify the

rank and support varieties of f̃ via this isomorphism.

6.4. Relating f̃ and f Support Varieties. We now wish to relate the support varieties
of f̃- and f-supermodules. Note that if M ∈ C(f,f0̄), then via restriction it is an object in
C(̃f,̃f0̄). Therefore, whenever M is finite dimensional one has an induced map of varieties,

res∗ : V(̃f,̃f0̄)(M) → V(f,f0̄)(M).

The present task is to better understand this map.
As a conseqence of (6.3.3) one has that the map

res∗ : V(̃f,̃f0̄)(C) → V(f,f0̄)(C).

is given by the canonical quotient map

V(̃f,̃f0̄)(C) → V(̃f,̃f0̄)(C)/T.

That is, for M ∈ C(f,f0) one has

V(̃f,̃f0̄)(M)/T ∼= res∗
(
V(̃f,̃f0̄)(M)

)
⊆ V(f,f0̄)(C). (6.4.1)

In fact one has the following theorem.

Theorem 6.4.1. Let M be a finite dimensional object in C(f,f0̄), then

V(̃f,̃f0̄)(M)/T ∼= res∗
(
V(̃f,̃f0̄)(M)

)
= V(f,f0̄)(M). (6.4.2)
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Proof. The first isomorphism is (6.4.1). It remains to show that the map res∗ is surjective.
To do so first requires a better understanding of the relationship between f̃ and f coho-

mology with coefficents in a finite dimensional f-supermodule U . Recall the definition of the
cochains for relative cohomology in Section 2.2 and that f̃1̄ = f1̄. If U is a finite dimensional
supermodule in C(f,f0̄), then the torus T acts on the cochains C•(̃f, f̃0̄;U) = Homf̃0̄

(Λ•
s(f1̄), U)

by (t.ϕ)(x) = tϕ(t−1x) for all t ∈ T, ϕ ∈ C•(̃f, f̃0̄;U), and x ∈ Λ•
s(f1̄). If N is a T -module and

λ ∈ X(T ) is a weight, then write Nλ for the λ weight space of N . Since T acts semisimply
on C•(̃f, f̃0̄;U) one has

C•(̃f, f̃0̄;U) = C•(̃f, f̃0̄;U)T ⊕
⊕

λ∈X(T )
λ6=0

C•(̃f, f̃0̄;U)λ

as T -modules. Observe that the action of T commutes with the differential in the definition
of relative cohomology. Thus one has

H(̃f, f̃0̄;U) = H(̃f, f̃0̄;U)T ⊕
⊕

λ∈X(T )
λ6=0

H(̃f, f̃0̄;U)λ

∼= H(f, f0̄;U)⊕
⊕

λ∈X(T )
λ6=0

H(̃f, f̃0̄;U)λ,

where the isomorphism follows from the equality C•(̃f, f̃0̄;U)T = C•(f, f0̄;U) and the exact-
ness of taking T invariants. In particular, one has

res : H(f, f0̄;U)
∼=−→ H(̃f, f̃0̄;U)T ⊆ H(̃f, f̃0̄;U). (6.4.3)

We are now prepared to prove the theorem. Let (a, a0̄) denote either (f, f0̄) or (̃f, f̃0̄). Note
that, just as for finite groups, an equivalent characterization of I(a,a0̄)(M) is the ideal of
elements in H•(a, a0̄; C) which annihilate the element 1a,M ∈ Ext0C(a,a0̄)

(M,M) corresponding
to the identity morphism. Note, too, that res(1f,M ) = 1f̃,M for any f-supermodule M and
that res(x.z) = res(x). res(z) for any x ∈ H•(f, f0̄; C) and z ∈ Ext•C(f,f0̄)

(M,M).

Since the ideal res−1
(
I(̃f,̃f0̄)(M)

)
defines the variety res∗

(
V(̃f,̃f0̄)(M)

)
, it suffices to prove

res−1
(
I(̃f,̃f0̄)(M)

)
= I(f,f0̄)(M).

Let x ∈ I(f,f0̄)(M). That is, x.1f,M = 0 and so

0 = res(x.1f,M ) = res(x). res(1f,M ) = res(x).1f̃,M .

That is, res(x) ∈ I(̃f,̃f0̄)(M) and so x ∈ res−1
(
I(̃f,̃f0̄)(M)

)
.

Conversely, let x ∈ res−1
(
I(̃f,̃f0̄)(M)

)
. Then

0 = res(x).1f̃,M = res(x). res(1f,M ) = res (x.1f,M ) .
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However by (6.4.3) (applied to the case U = M∗ ⊗M) one has that res is injective and so
0 = x.1f,M . That is, x ∈ I(f,f0̄)(M). This proves (6.4.2). �

6.5. Properties of f Support Varieties. We record some basic properties of support
varieties for f-supermodules which follow from the rank variety description of f̃ support
varieties and the isomophism given in Theorem 6.4.1. The situation is reminiscent of the
connection between support varieties for the Frobenius kernels Gr and GrT considered in
[Nak]. Other properties of rank varieties can be found in [BKN1, Theorem 6.4.2].

Theorem 6.5.1. Let M,N,M1,M2 and M3 be finite dimensional f-supermodules in C(f,f0̄).
Then,

(a) V(f,f0̄)(M ⊗N) = V(f,f0̄)(M) ∩ V(f,f0̄)(N);
(b) V(f,f0̄)(M∗) = V(f,f0̄)(M);
(c) V(f,f0̄)(M∗ ⊗M) = V(f,f0̄)(M);
(d) If

0 → M1 → M2 → M3 → 0
is a short exact sequence, then

V(f,f0̄)(Mi) ⊆ V(f,f0̄)(Mj) ∪ V(f,f0̄)(Mk),

where {i, j, k} = {1, 2, 3}.

Proof. We first make the following observations. Consider a finitely generated, commuta-
tive, graded algebra S where each graded summand is finite dimensional. Furthermore,
assume some group, Γ, acts semisimply on S and the action respects the grading on S.
Let ι : SΓ ↪→ S be the canonical embedding. If J is a graded ideal of S, then the ideal
ι−1 (J) = JΓ. In addition, if I, J are both graded ideals of S, then one has

(I + J)Γ = IΓ + JΓ. (6.5.1)

Namely, one first notes that one has the inclusion IΓ + JΓ ⊆ (I + J)Γ . However, as graded
Γ-modules one has

(I + J) / (I ∩ J) ∼= I ⊕ J.

By using the fact that taking fixed points under Γ is exact (because the action of Γ is
semisimple) one has

(I + J)Γ / (I ∩ J)Γ ∼= (I ⊕ J)Γ .

However, (I ∩ J)Γ = IΓ ∩ JΓ and (I ⊕ J)Γ = IΓ ⊕ JΓ. Thus one has

(I + J)Γ /
(
IΓ ∩ JΓ

) ∼= (
IΓ ⊕ JΓ

)
. (6.5.2)

On the other hand, considering IΓ and JΓ as Γ-modules one has(
IΓ + JΓ

)
/

(
IΓ ∩ JΓ

) ∼= IΓ ⊕ JΓ. (6.5.3)

Using (6.5.2) and (6.5.3) to compare dimensions of the graded summands of (6.5.1), one
sees that the earlier inclusion must, in fact, be an equality.

To prove part (a), one first notes that as a consequence of the rank variety description
on has by [BKN1, Proposition 6.3.1] that

V(̃f,̃f0̄)(M ⊗N) = V(̃f,̃f0̄)(M) ∩ V(̃f,̃f0̄)(N).
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As a matter of notation, if J is an ideal, let
√

J denote its radical ideal. Then the above
equality translates into the equality√

I(̃f,̃f0̄)(M ⊗N) =
√

I(̃f,̃f0̄)(M) + I(̃f,̃f0̄)(N).

Taking invariants with respect to T and applying (6.5.1), one obtains√
I(f,f0̄)(M ⊗N) =

√
I(̃f,̃f0̄)(M ⊗N)T

=
(√

I(̃f,̃f0̄)(M ⊗N)
)T

=
(√

I(̃f,̃f0̄)(M) + I(̃f,̃f0̄)(N)
)T

=
√

I(̃f,̃f0̄)(M)T + I(̃f,̃f0̄)(N)T

=
√

I(f,f0̄)(M) + I(f,f0̄)(N).

This proves the desired equality of varieties.
Part (b) is proven by a similar but easier argument and part (c) follows from parts (a)

and (b).
Finally, to prove part (d) one observes that the rank variety description implies (cf.

[BKN1, Theorem 6.4.2(d)]) that one has

V(̃f,̃f0̄)(Mi) ⊆ V(̃f,̃f0̄)(Mj) ∪ V(̃f,̃f0̄)(Mk),

where {i, j, k} = {1, 2, 3}. One then argues as in part (a) using instead that(√
I(̃f,̃f0̄)(Mj)I(̃f,̃f0̄)(Mk)

)T
=

√
I(̃f,̃f0̄)(Mj)T I(̃f,̃f0̄)(Mk)T =

√
I(f,f0̄)(Mj)I(f,f0̄)(Mk).

�

Another important property of support varieties is their ability to detect projectivity.
This is illustrated by the following theorem.

Theorem 6.5.2. Let M be a finite dimensional supermodule in C(f,f0̄). Then the following
are equivalent:

(a) The supermodule M is projective in C(f,f0̄);
(b) The supermodule M is projective in C(̃f,̃f0̄);
(c) The variety V(̃f,̃f0̄)(M) = {0}.

Proof. If M is a projective f-supermodule, then it remains so upon restriction to f̃, hence
one has that (a) implies (b).

To prove (b) implies (a) it suffices to show

Exti
C(f,f0̄)

(M,L) ∼= Hi(f, f0̄;M
∗ ⊗ L) = 0
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for all objects L in C(f,f0̄) and i > 0. Since f̃ is an ideal in f one can consider the Lyndon-
Hochschild-Serre spectral sequence for the pairs (̃f, f̃0̄) ⊆ (f, f0̄):

Ei,j
2 = Hi

(
f/̃f, f0̄/̃f0̄; H

j (̃f, f̃0̄;M
∗ ⊗ L)

)
⇒ Hi+j(f, f0̄;M

∗ ⊗ L).

By assumption M is a projective object in C(̃f,̃f0̄) and so Hj (̃f, f̃0̄;M∗⊗L) = 0 for j > 0 and
the spectral sequence collapses. That is, for i ≥ 0 one has

Hi
(
f/̃f, f0̄/̃f0̄; (M

∗ ⊗ L)f̃
)
∼= Hi(f, f0̄;M

∗ ⊗ L).

Since the objects of C(f,f0̄) are finitely semisimple as f0̄-supermodules and since f/̃f = f0̄/̃f0̄

is a one dimensional subtorus of f0̄ one has Hi(f/̃f, f0̄/̃f0̄; (M∗⊗L)f̃) = 0 for i > 0. It follows
that Hi(f, f0̄;M∗ ⊗ L) = 0 and so M is projective in C(f,f0̄).

The equivalence of (b) and (c) follows from [BKN1, Theorem 6.4.2(b)]. �

Note that it is not true that if V(f,f0̄)(M) = {0}, then M is projective as a f-supermodule.
One can find examples of f-supermodules, M, so that V(̃f,̃f0̄)(M) 6= {0}, but by (6.4.2)

V(f,f0̄)(M) ∼= V(̃f,̃f0̄)(M)/T = {0}.

On the other hand, by the previous theorem M is not projective as an f-supermodule since
V(̃f,̃f0̄)(M) 6= {0}.

7. Calculation of Support Varieties

7.1. Calculation of Support Varieties for Kac Supermodules. Recall that for λ ∈
X+

0 we constructed the Kac supermodule K(λ). The following result shows that the g and
f support varieties are zero for all Kac supermodules.

Proposition 7.1.1. Let λ ∈ X+
0 and N be a finite dimensional supermodule in C(g,g0).

Then,

(a) V(g,g0)(K(λ), N) = {0};
(b) V(g,g0)(K(λ)) = {0};
(c) V(f,f0̄)(K(λ)) = {0}.

Proof. We present a modified version of the argument used to prove [BKN2, Theorem
3.2.1]. First observe that part (b) follows immediately from part (a). Also, as in the
proof of [BKN2, Corollary 3.3.1], for part (a) it suffices to prove that for n sufficiently large,
Extn

C(g,g0)
(K(λ), N) = 0.

By Frobenius reciprocity, for all n we have

Extn
C(g,g0)

(K(λ), N) ∼= Extn
C(g0⊕g+,g0)

(L0(λ), N).

Since g+ is an ideal in g0⊕g+ one can apply the Lyndon-Hochschild-Serre spectral sequence
to (g+, {0}) ⊆ (g0 ⊕ g+, g0):

Ei,j
2 = Exti

C(g0,g0)
(L0(λ),Extj

C(g+,{0})
(C, N)) ⇒ Exti+j

C(g0⊕g+,g0)
(L0(λ), N).
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Since C(g0,g0) consists of g0-supermodules which are finitely semisimple over g0, this spec-
tral sequence is zero for i > 0. That is, it collapses at the E2 page and yields

Homg0(L0(λ),Extn
C(g+,{0})

(C, N)) ∼= Extn
C(g0⊕g+,g0)

(L0(λ), N). (7.1.1)

According to the definition of relative cohomology, Extn
C(g+,{0})

(C, N) is a subquotient of

Λn
s ((g+)∗) ⊗ N . But Λn

s ((g+)∗) is positively graded by degree and N is finite dimensional
so for sufficiently large n (depending on λ), Λn

s ((g+)∗)⊗N contains no composition factors
of the form L0(λ). Thus Extn

C(g,g0)
(K(λ), N) = 0 for n � 0.

Finally, to prove part (c) it suffices to observe that the map res∗ : V(f,f)0̄
(K(λ)) →

V(g,g0)(K(λ)) = {0} is finite-to-one. Since V(f,f0̄)(K(λ)) is a conical variety it follows that it
must be equal to {0}. �

7.2. Recall that Serganova [Ser, Lemma 5.3] proved that the set of atypical weights for g is

Ω = {aεi + εi+1 + · · ·+ εn | a ∈ C, 1 ≤ i ≤ n}.
Moreover, she determined the characters of the simple g-supermodules by determining com-
position series for the Kac supermodules. Serganova’s abridged results for finite dimensional
simple supermodules are presented in the following theorem.

Theorem 7.2.1. [Ser, Theorem 6.3, Corollary 7.6] Let λ ∈ X+
0 .

(a) If λ /∈ Ω then K(λ) ∼= L(λ).
(b) Let λ ∈ Ω.

(i) If λ = aεi + εi+1 + · · · + εn with a 6= 0, 1, then there is the following exact
sequence:

0 → L(λ− εi) → K(λ) → L(λ) → 0. (7.2.1)
(ii) The structure of K(0) and K(ε1 + · · ·+ εn) is described by the exact sequences

0 → L(−εn) → K(0) → L(0) → 0, (7.2.2)

0 → L(0) → K(ε1 + · · ·+ εn) → L(ε1 + · · ·+ εn) → 0. (7.2.3)

From the above theorem one has an alternative characterization of typical/atypical for
λ ∈ X+

0 : namely, λ is typical if and only if K(λ) is simple.

7.3. Calculation of Support Varieties for Simple Supermodules. The following the-
orem presents the computation of support varieties of simple g-supermodules. Our results
demonstrate that L(λ) is typical if and only if the support variety of L(λ) is zero.

Theorem 7.3.1. Let λ ∈ X+
0 and let L(λ) be finite dimensional simple g-supermodule with

highest weight λ. Then,

(a) If λ /∈ Ω then V(g,g0)(L(λ)) = V(f,f0̄)(L(λ)) = {0};
(b) If λ ∈ Ω then V(f,f0̄)(L(λ)) = V(f,f0̄)(C) and V(g,g0)(L(λ)) = V(g,g0)(C).

Proof. Part (a) is immediate from Proposition 7.1.1(c) and Theorem 7.2.1(a).
To prove part (b), first observe that it suffices to prove V(f,f0̄)(L(λ)) = V(f,f0̄)(C). Namely,

one will then have

V(g,g0)(C) = res∗
(
V(f,f0̄)(C)

)
= res∗

(
V(f,f0̄)(L(λ))

)
⊆ V(g,g0)(L(λ)) ⊆ V(g,g0)(C),
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which implies the result for g. Furthermore, recall from Section 3 that

Ω ∩X+
0 = {aε1 + · · ·+ εn | a = 1, 2, 3, . . . } ∪ {bεn | b = 0,−1, . . . }.

We will repeatedly use two facts about support varieties of f-supermodules: the support
variety of a supermodule in a short exact sequence is contained in the union of support
variety of the other two supermodules by Theorem 6.5.1(d), and the support variety of a
Kac supermodule is zero by Proposition 7.1.1(c).

Note that L(0) ∼= C and set V := V(f,f0̄)(C). From (7.2.2) it follows that V = V(f,f0̄)(L(−εn)).
One can now use the remarks from the previous paragraph and (7.2.1) to recursively prove
that V = V(f,f0̄)(L(−bεn)) for b = −2,−3, . . . . Similarly, we have V = V(f,f0̄)(L(ε1 + · · ·+ εn))
from (7.2.3). Applying (7.2.1) recursively shows that V = V(f,f0̄)(L(aε1 + · · · + εn)) for all
a = 2, 3, . . . . Note that all elements of Ω∩X+

0 were considered above and thus the theorem
is proven. �

8. Realization of Support varieties

8.1. One important property in the theory of support varieties is the realizability of any
conical variety as the support variety of some module in the category. Carlson [Ca1] first
proved this for finite groups in the 1980s. Friedlander and Parshall [FPa] later used Carlson’s
proof to establish realizability for restricted Lie algebras. For arbitrary finite group schemes
the finite generation of cohomology due to Friedlander and Suslin [FS] allowed one to define
support varieties. In this generality the realizability of supports was established using
Friedlander and Pevtsova’s method [FPe] of concretely describing support varieties through
π-points.

In the classical Lie superalgebra setting the realizability of supports was established for
the detecting subalgebra e in [BKN1, Theorem 6.4.3]. The main tool to establish this
theorem is the tensor product theorem [BKN1, Proposition 6.3.1]. Since the detecting
subalgebra for W (n) also has the tensor product theorem by Theorem 6.5.1(a), it follows
by the argument used in the classical case that the realization theorem also holds for f. The
goal of this section is to lift these realization theorems to the support varieties of g where
g is a classical Lie superalgebras as considered in [BKN1] or W (n).

8.2. There is a slight difference in the way that the support varieties and detecting subal-
gebras are defined in the two cases. We will fix a common notation which allows us to treat
both cases more or less simultaneously. Let g be a classical Lie superalgebra with a polar
and stable action of G0̄ on g1̄ as in [BKN1] or let g = W (n). Let C = C(g,g0̄) if g is classical
and C = C(g,g0) if g = W (n). Let

H• =

{
H•(g, g0̄; C), if g is classical;
H•(g, g0; C), if g = W (n).

Let a denote the detecting subalgebra for g and let W denote the finite pseduoreflection
group such that

res : H• ∼=−→ H•(a, a0̄; C)W ⊆ H•(a, a0̄; C).
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If M and N are objects in C for which Ext•C(M,N) (resp. Ext•C(M,M)) is a finitely generated
H•-module, then write Vg(M,N) for the corresponding relative support variety (resp. Vg(M)
for the corresponding support variety).

As a matter of notation, if J is an ideal of some commutative ring A, then let Z(J) be
the variety defined by J. That is,

Z(J) = {m ∈ MaxSpec(A) | J ⊆ m} .

In particular, for a ∈ A let Z(a) denote the variety defined by the ideal (a).

8.3. Tensor Products. One of the fundamental results in the theory of support varieties
for finite group schemes is that the support variety of the tensor product of two modules
is the intersection of the two modules’ support varieties. Lacking equality in (6.2.1) we are
limited to the following analogue.

Lemma 8.3.1. Let g be a classical, stable, and polar Lie superalgebra or let g be W (n).
Let a be the detecting subalgebra of g. Let M and N be a-supermodules in C(a,a0̄) for which
Ext•C(a,a0̄)

(M,M), Ext•C(a,a0̄)
(N,N), and Ext•C(a,a0̄)

(M ⊗ N,M ⊗ N) are finitely generated
H•(a, a0̄; C)-modules. Then,

res∗
(
V(a,a0̄) (M ⊗N)

)
= res∗

(
V(a,a0̄) (M)

)
∩ res∗

(
V(a,a0̄) (N)

)
.

Proof. If M is a finite dimensional g-supermodule in C and I(a,a0̄)(M) is the ideal which de-
fines V(a,a0̄)(M), then res∗

(
V(a,a0̄)(M)

)
is the variety defined by the ideal res−1

(
I(a,a0̄)(M)

)
.

Recall that

res : H• ∼=−→ H•(a, a0̄; C)W ⊆ H•(a, a0̄; C),

where W is a finite group. If we identify H• with its image under this map, one has
res−1(J) = JW for any ideal J in H•(a, a0̄; C). Furthermore, given an ideal I we write

√
I

for the radical of the ideal.
By the tensor product property of a support varieties (cf. [BKN1, Proposition 6.3.1(a)]

and Theorem 6.5.1(a)) one has

res∗
(
V(a,a0̄) (M ⊗N)

)
= res∗

(
V(a,a0̄) (M) ∩ V(a,a0̄) (N)

)
.

Applying the earlier remarks, at the level of ideals the above equality becomes√
I(a,a0̄)(M ⊗N)W =

√(
I(a,a0̄)(M) + I(a,a0̄)(N)

)W
.

However by (6.5.1) one has√(
I(a,a0̄)(M) + I(a,a0̄)(N)

)W =
√

I(a,a0̄)(M)W + I(a,a0̄)(N)W .

As the latter ideal defines the variety res∗
(
V(a,a0̄) (M)

)
∩ res∗

(
V(a,a0̄) (N)

)
, this yields the

desired result. �
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8.4. Carlson Supermodules. To prove realizability one needs to introduce a family of
supermodules for which one can explicitly calculate their support varieties. Let n > 0 and
let ζ ∈ Hn. We can consider ζ to be a g-homomorphism from the nth syzygy of the trivial
supermodule, Ωn(C), to C. Set

Lζ = Ker(ζ : Ωn(C) → C) ⊆ Ωn(C).

These supermodules are often referred to as “Carlson modules.” As in the theory of support
varieties for finite group schemes the importance of the supermodule Lζ is that one can
explicitly realize its support as the zero locus of ζ in MaxSpec(H•).

8.5. The first step is to compute the support variety of Lζ over the detecting subalgebra.

Lemma 8.5.1. Let g be a classical, stable, and polar Lie superalgebra or let g be W (n).
Let a denote the detecting subalgebra of g. Given ζ ∈ Hn and Lζ as above, then

V(a,a0̄)(Lζ) = V(a,a0̄)(Lres(ζ)) = Z(res(ζ)).

Proof. Given ζ ∈ Hn, we compute the a support variety of Lζ as follows. Construct the
short exact sequence of g-supermodules,

0 → Lζ → Ωn(C)
ζ−→ C → 0.

Upon restriction to a one obtains the short exact sequence,

0 → Lζ ↓a→ Ωn(C) ↓a
res(ζ)−−−→ C → 0.

By using the graded version of Schaunel’s Lemma, Lζ ↓a
∼= Lres(ζ) ⊕ P and Ωn(C) ↓a

∼=
Ωn

a (C)⊕P , where Ωn
a (C) denotes Ωn(C) for the trivial a-supermodule, Lres(ζ) is the Carlson

a-supermodule for res(ζ) ∈ Hn(a, a0̄; C), and P is some projective a-supermodule. Therefore,
we have the following short exact sequence of a-supermodules:

0 → Lres(ζ) ⊕ P → Ωn
a (C)⊕ P → C → 0.

By the rank variety description (cf. [BKN1, Theorem 6.4.3]) of V(a,a0̄)(Lres(ζ)) when g is
classical or the rank variety description of V(̃f,̃f0̄)(Lres(ζ)) and Theorem 6.4.1 when g = W (n),
one has that V(a,a0̄)(Lres(ζ)) = Z(res(ζ)). Therefore, since Lζ ↓a

∼= Lres(ζ) ⊕ P, one has that

V(a,a0̄)(Lζ) = V(a,a0̄)(Lres(ζ)) = Z(res(ζ)).

�

8.6. We should warn the reader that if g = W (n) it may be that Lζ is infinite dimensional
and, hence, Ext•C(Lζ , Lζ) is no longer necessarily finitely generated as an H•-module. Let us
mention that since as a-supermodules Lζ

∼= Lres(ζ)⊕P and Lres(ζ) is finite dimensional (since
the projective indecomposible a-supermodules are finite dimensional by [BKN2, Proposition
5.2.2]), this complication did not arise in Lemma 8.5.1. Similarily, when g is classical Lζ

is necessarily finite dimensional. However, if one wishes to consider support varieties for
W (n), then the issue can no longer be ignored. To circumvent this difficulty one can instead
choose to work with relative support varieties as we now demonstrate.
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Proposition 8.6.1. Let g = W (n) and let ζ1, . . . , ζs ∈ H• be homogeneous elements with
corresponding Carlson supermodules Lζ1 , . . . , Lζs.

(a) Then Ext•C(Lζ1 ⊗ · · · ⊗ Lζs , C) is finitely generated over H•.
(b) Vg(Lζ1 ⊗ · · · ⊗ Lζs , C) ⊆ ∩s

i=1Vg(Lζi
, C)

Proof. (a) We will prove this by induction on s. For s = 1, consider the short exact sequence

0 → Lζ
α−→ Ωn(C)

ζ−→ C → 0. (8.6.1)

This induces a long exact sequence of H•-modules:

· · · d−→ Extt
C(C, C)

ζ∗−→ Extt
C(Ω

n(C), C) α∗−→ Extt
C(Lζ , C) d−→ Extt+1

C (C, C) → · · · ,

where α∗ and ζ∗ are the maps induced by α and ζ, respectively, and d denotes the connecting
morphism in the long exact sequence.

For t ≥ 0, set

At = Extt
C(Ω

n(C), C)/Ker (α∗) ,

Bt = Im (d) ⊆ Extt+1
C (C, C) .

Let A• = ⊕tAt and B• = ⊕tBt. Note that

α•∗ : Ext•C(Ω
n(C), C) → Ext•C(Lζ , C)

d• : Ext•C(Lζ , C) d−→ Ext•C (C, C)

are H•-module homomorphisms, where α•∗ and d• are the maps obtained by taking the
direct sum of the maps α∗ and d, respectively. Hence, A• and B• are H•-modules and from
the long exact sequence given above one has the short exact seqence of H•-modules,

0 → A•
ᾱ•∗−→ Ext•C(Lζ , C) d̄•−→ B• → 0, (8.6.2)

where ᾱ•∗ and d̄• are the maps induced by α•∗ and d•, respectively.
However, for all t ≥ 0, Extt

C(Ω
n(C), C) ∼= Extn+t

C (C, C) by degree shifting. Taking the
direct sum of these maps yields an H•-module isomorphism

Ext•C(Ω
n(C), C) ∼= Ext•C(C, C).

Therefore Ext•C(Ω
n(C), C) is finitely generated over H• . Since H• is a Noetherian ring it fol-

lows that the quotient module A• is finitely generated over H• . Similarily, since Ext•C(C, C)
is finitely generated over H•, the submodule B• is also finitely generated. Finally, using
(8.6.2) and the fact that H• is Noetherian one has that Ext•C(Lζ , C) must be finitely gener-
ated over H•.

For the inductive step we claim that if M is a module in C for which Ext•C(M, C) is a
finitely generated H•-module and ζ is a homogeous element of H•, then Ext•C(M ⊗Lζ , C) is
finitely generated over H•. The argument parallels the base case considered above. Namely,
consider the short exact sequence obtained by tensoring (8.6.1) with M :

0 → M ⊗ Lζ → M ⊗ Ωn(C) → M ⊗ C → 0.

Note that by assumption (i) Ext•C(M, C) is finitely generated over H•, and (ii) Ext•C(M ⊗
Ωn(C), C) is finitely generated over H• by applying a dimension shift argument (as in the
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s = 1 case). Applying the long exact sequence in cohomology and arguing as in the base
case shows that Ext•C(M ⊗ Lζ , C) is finitely generated over H•.

(b) The statement clearly holds for s = 1. Now assume that the statement holds for s−1
factors. For a fixed i = 1, 2, . . . , s, set N = Lζ1⊗· · ·⊗ L̂ζi

⊗· · ·⊗Lζs . Consider the following
short exact sequence given by ζi,

0 → Lζi
→ Ωn(C) → C → 0.

By tensoring by N we obtain

0 → Lζi
⊗N → Ωn(C)⊗N → N → 0.

Therefore, by induction

Vg(Lζ1 ⊗ · · · ⊗ Lζs , C) ⊆ Vg(Ωn(C)⊗N, C) ∪ Vg(N, C)

= Vg(N, C)

⊆ Vg(Lζ1 , C) ∩ · · · ∩ ̂Vg(Lζi
, C) ∩ · · · ∩ Vg(Lζs , C).

Since i is arbitrary we conclude that

Vg(Lζ1 ⊗ · · · ⊗ Lζs , C) ⊆ ∩s
i=1Vg(Lζi

, C).

�

8.7. Support Varieties for Carlson Supermodules. We are now prepared to compute
(relative) support varieties for the Carlson supermodules.

Proposition 8.7.1. Let ζ ∈ Hn and Lζ be given as above.
If g is a classical, stable, and polar Lie superalgebra, then one has

Vg(Lζ) = res∗
(
V(a,a0̄)(Lζ)

)
= Z(ζ). (8.7.1)

If g = W (n), then one has

Vg(Lζ , C) = res∗
(
V(a,a0̄)(Lζ)

)
= Z(ζ). (8.7.2)

Proof. We first prove (8.7.1). Since

res∗ : V(a,a0̄)(Lζ) → Vg(Lζ),

one has that
res∗

(
V(a,a0̄)(Lζ)

)
⊆ Vg(Lζ).

However, by Lemma 8.5.1 the variety res∗
(
V(a,a0̄)(Lζ)

)
is defined by the ideal res−1 ((res(ζ))) =

(ζ), where the equality of ideals follows from the explicit description of the map res . There-
fore, one has

Z(ζ) = res∗
(
V(a,a0̄)(Lζ)

)
⊆ Vg(Lζ). (8.7.3)

On the other hand, one can use the proof given in [Ca2, Proposition 6.13] to show that ζ2

annihilates Ext•C(Lζ , Lζ). Let Ig(Lζ) denote the annihilator of H• acting on this Ext group
(i.e. the ideal which defines the support variety). So we have ζ2 ∈ Ig(Lζ). This implies that
Ig(Lζ) contains the ideal generated by ζ2. This in turn implies that the radical of the ideal
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Ig(Lζ) contains the ideal generated by ζ. Thus the variety defined by the ideal
√

Ig(Lζ) is
contained in Z(ζ), that is,

Vg(Lζ) ⊆ Z(ζ). (8.7.4)

Combining equations (8.7.3) and (8.7.4) one has (8.7.1).
To prove (8.7.2) one argues much as above. Namely, one has

res∗ : V(f,f0̄)(Lζ , C) → Vg(Lζ , C).

However, recall that Lζ
∼= Lres(ζ)⊕P as f-supermodules where P is a projective f-supermodule.

Also note that by definition Lres(ζ) can be assumed to lie within the principal block of f.
However, by [BKN2, Proposition 5.2.2] the trivial supermodule is the only simple super-
module in the principal block of f. Taken together with [Ben2, Proposition 5.7.1] these
observations imply that V(f,f0̄) (Lζ) = V(f,f0̄) (Lζ , C). Then Lemma 8.5.1 implies that the
variety res∗

(
V(f,f0̄)(Lζ)

)
is defined by the ideal res−1 ((res(ζ))) = (ζ). Therefore, one has

Z(ζ) = res∗
(
V(f,f0̄)(Lζ , C)

)
⊆ Vg(Lζ , C). (8.7.5)

On the other hand, one can once again use the proof given in [Ca2, Proposition 6.13]
to show that ζ2 annihilates Ext•C(Lζ , Lζ) when g = W (n). As for finite groups (cf. [Ben2,
Section 5.7]), this implies ζ2 annihilates Ext•C(Lζ , C) and so is an element of the ideal which
defines Vg(Lζ , C). Just as before this implies

Vg(Lζ , C) ⊆ Z(ζ). (8.7.6)

Combining equations (8.7.5) and (8.7.6) one has (8.7.2). �

8.8. Realization Theorem. We are now ready to prove the realization theorem for g
being either a classical, stable, and polar Lie superalgebra as in [BKN1] or W (n).

Theorem 8.8.1. Let g be a classical, stable, polar Lie superalgebra or let g = W (n). Let
X be a conical subvariety of Vg(C). If g is classical, then there exists a finite dimensional
supermodule M in C such that

Vg(M) = X.

If g = W (n), then there exists a supermodule M in C such that

Vg(M, C) = X.

Proof. First, express X as the zero locus of homogeneous elements ζ1, . . . , ζs ∈ H•. That is,
fix homogeneous elements ζ1, . . . , ζn ∈ H• such that

X = Z(ζ1) ∩ · · · ∩ Z(ζs).

Let M = Lζ1 ⊗ · · · ⊗ Lζs . If g is classical then one can combine (8.7.1), Lemma 8.3.1, and
the fact that Vg(N1 ⊗ N2) ⊆ Vg(N1) ∩ Vg(N2) for any two supermodules N1, N2 in C (cf.
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[BKN2, (4.6.4)]) to obtain

X = ∩s
i=1Z(ζi)

= ∩s
i=1Vg (Lζi

)

= ∩s
i=1 res∗

(
V(a,a0̄) (Lζi

)
)

= res∗
(
V(a,a0̄)(M)

)
⊆ Vg (M)

⊆ ∩s
i=1Vg (Lζi

)

= ∩s
i=1Z(ζi)

= X.

It then follows that Vg(M) = X.

The case when g = W (n) is argued similarily using instead (8.7.2) and Proposition 8.6.1(b).
�

8.9. Representation Type. Germoni [Ger] investigated the representation type of the
Lie superalgebra sl(m|n). He proved that if m, n ≥ 2 then sl(m|n) has wild representation
type. Germoni also conjectured that this should hold for blocks of atypicality greater than
or equal to two. Later, Shomron [Sho] proved that each block of the Lie superalgebra W (n)
has wild representation type for n ≥ 3. Both cases are based on studying the Ext1 quiver.

Recently Farnsteiner [Far, Theorem 3.1] showed that if the dimension of the support
variety of any simple module in a block for a finite group scheme has dimension at least
three, then the block has wild representation type. The proof chiefly depends upon using the
finite group scheme analogue of the above realizability result to construct sufficiently many
indecomposable modules in the block. With these results in mind we present the following
conjecture relating the representation type of Lie superalgebras with our construction of
support varieties for both the classical and Cartan type Lie superalgebras.

Conjecture 8.9.1. Let B be a block of C. If there exists a simple supermodule S in B with
dimVg(S) ≥ 3, then B has wild representation type.

In light of Conjecture 8.9.1 and Germoni’s conjecture on the representation type of the
blocks of sl(m|n), it is worthwhile to note that by the calculations in [BKN2] one has that
if B is a block of gl(m|n) of atypicality k, then

Vg(S) ∼= Ak

for all simple supermodules S in B.
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