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Let w be a cusp form on GL(2) over a number field F and let E be a quadratic extension
of F. Denote by 7z the base change of 7 to E and by Q a unitary character of A;/E*. We
use the relative trace formula to give an explicit formula for L(1/2, 7 ® Q) in terms of
period integrals of Gross—Prasad test vectors. We give an application of this formula to

equidistribution of geodesics on a hyperbolic 3-fold.

1 Introduction

Let us begin by recalling relevant results on central L-values for GL(2). Let F be a number
field and fix a quadratic extension E/F. Denote the norm map from E to F by Ng,r and
the adeles of a number field K by Ax. We will take 7 to be a cuspidal automorphic
representation of GL(2, Ar) whose central character w, is trivial on Ng,rAj. That is,
either w, = 1 or w; = ng/r, the quadratic character attached to E/F. Now take a unitary

character
Q:AL/E* - C*

such that Q[,x = w,. Assume that the ramifications of = and Q are disjoint. We will be

interested in a formula for the central L-value of the automorphic representation 7 ®
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of GL(2, Ag). For GL(2) L-values, typically one wants a formula in terms of either period
integrals or Fourier coefficients, as these are easier to compute. In this paper, we will
establish a formula in terms of period integrals. For a formula for L(1/2, ) in terms of
Fourier coefficients when w, = 1 and F is totally real, see [24], [1].

Let D be a quaternion algebra defined over F such that

(1) E < Dand
(2) = transfers, in the sense of Jacquet-Langlands, to a representation 7” of
D*(Ar).

We allow for the possibility that D(F) >~ M,(F), so at least one such D always exists. In
this case we take = for = 2.

Given such a quaternion algebra D, we define period integrals
PP(p) = f e(t)Q 7' (¢) dt
EXA}\A%

for ¢ € 7P. We note that the integral makes sense because of the compatibility between
Q and w,. Waldspurger [25] and Jacquet [14] proved that L(1/2, 7 ® Q) = 0 if and only if
PP(p) =0 for all D and ¢ € ¥ as above.

Note that the function

¢ — PP(yp)
is an element of Hom,x (7P, Q). It is known that
dimc Homy (77, Q) < 1,
and moreover, it is clear that it is nonzero if and only if
Hompgx (7.2,Q,) #0

for all places v of F.

The L-function L(s, 7 ® Q) is symmetric and when the sign in the functional
equation is —1, the period integrals are forced to vanish for local reasons, namely the
fact that

D
Homg; (7,

Q,)=0

for some place v of F.
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Let us assume from now on that the sign in the functional equation is +1. In this

case, there is a unique quaternion algebra D/F such that
Homgpx (72, Q,) #0

for all places v of F. The algebra D can be characterized by local e-factors; see [9,
Proposition 1.1]. Let us fix this D.

In [25], assuming w, = 1, Waldspurger proved that for any ¢ € n?,

1 | PP (g)?
L(1/2, Q) =—— WE, 0, Q)———,
(1/2, 71 ® Q) §(2)1:[a( 0, Q) .0

where the o, (E, ¢, Q)'s (almost all 1) are local constants defined in terms of certain in-
tegrals. It is convenient to write the formula in terms of |PP(¢)|?/(¢, ) because this
quantity is invariant under scaling. There are two points we wish to emphasize about
Waldspurger's work. First, Waldspurger uses the theta correspondence to establish his
result. Second, the constants «,(E, ¢, 2) are not as explicit as one would like for appli-
cations. In fact, it is not even clear from Waldspurger's formula that L(1/2, 7 ® Q) > 0.
(This is predicted by the generalized Riemann hypothesis. It is immediate from our for-
mula below, and was proven by Guo [10] and Jacquet-Chen [15] using the relative trace
formula.)

It seems likely that in order to get the most explicit formula possible, one needs to
choose a specific vector ¢ € 72, In the case that the ramifications of = and Q are disjoint,
the work of Gross and Prasad [9] provides a nice test vector ¢ € n” such that £(p) # 0
for any nonzero ¢ € Hom, (7P, Q). Thus, the result of Waldspurger and Jacquet can be
rephrased as L(1/2, 7z ® Q) = 0 if and only if PP (p) = 0, with ¢ equal to the Gross—Prasad
test vector. We also remark that a formula in terms of the Gross—Prasad test vector is
particularly well suited for certain applications [22].

Subsequent to Waldspurger’s work, there has been considerable work devoted to
obtaining an explicit formula for L(1/2, 7z ® ) in terms of P?(¢) for a specific choice of
¢ € nP. We mention four results. First, in [7] Gross obtained a formula for L(1/2, 7z ® )
in terms of the Gross—Prasad test vector when F = Q, E is an imaginary quadratic field, =
is holomorphic of weight 2 and inert prime level, and Q is unramified. Then in [27], Zhang
generalized Gross's formula to F totally real, E/F imaginary quadratic, 7 holomorphic
of parallel weight 2 and arbitrary level N, and Q unramified above N and where E/F

is ramified. However, the test vector ¢ that Zhang must choose is not necessarily the
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Gross—Prasad test vector; it is locally away from the places of F that ramify in E. Xue
[26] generalized Zhang's result to 7 holomorphic of arbitrary even weight, again with
ramification conditions. (Again, his test vector is not the one given by Gross-Prasad.) For
real quadratic extensions, Popa [19] obtained a formula for L(1/2, 7z ® Q) in terms of the
Gross—Prasad test vector when F = Q, E is a real quadratic field, = has even weight with
square-free level prime to the discriminant of E, and Q is unramified. These results are
all established using the theta correspondence and the Rankin-Selberg method.
Jacquet developed another method to study period integrals and L-values, known
as the relative trace formula. In this paper, we continue the work of [13], [14], [10], and [15]
to prove an explicit version of Waldspurger’s formula for L(1/2, 7 ® ), in the generality

D js the Gross—Prasad test

given in the first paragraph, in terms of PP(p) when ¢ € 7
vector. We would like to point out that the relative trace formula, while perhaps having
greater analytic difficulties, is a much more general method for studying L-values and
periods than the theta correspondence (see, for example, [16] for exact formulae for
period integrals over unitary groups). Even for GL(2), the formula we have obtained is
more general than the explicit results obtained to date via the theta correspondence. For
instance, F need not be totally real and », need not be trivial.

Let us briefly outline our method. We define G = D* and o =nP. For fe¢

C>(G(Ar)), consider the distribution
5= Y [etpows ! de [ ooeo dr,
¢

where the sum is taken over an orthonormal basis {¢} of ¢ and the integrals are taken
over E*A;\A%. By local considerations it is known that the distribution factors into a
product of local ones, however this factorization is not unique. The work of Jacquet and
Chen [15, Theorem 2] uses the relative trace formula to give a canonical decomposition
of this distribution.

Let f € C°(G(AF)) be of the form f =], . fi, f*, with £ the unit in the Hecke
algebra of G away from Sy. Then Jacquet and Chen prove that

1 - Ls(1,nL3(1/2, 15 @ Q)
J"(ﬂzi l_[ J"vo(ﬁfo) l_[ (‘9(1"7%'1'0')0)21‘(0'771)0)) = LSo(1,7t,Ad];7 '
U()GS() UO.ESOt
vg iner

where S denotes the places of F and Sy, n = ng/r, and the j(,vo 's are certain local distri-

butions defined in Sections 2 and 3. To obtain our formula, we choose test functions f;,
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such that
J,(f) = |PP(g)?,

where ¢ is the Gross—Prasad test vector. We then compute the local distributions which
gives a formula for L(1/2, 7z ® Q) in terms of PP(p) and L(1,7, Ad) (Theorem 4.1). Now
L(1, 7, Ad) is essentially (¢,, ¢,), where ¢, is a newvector for n. Since one may prefer
a formula in terms of (¢,, ¢,) for certain applications, we also rewrite our formula for
L(1/2,7g ® ) in terms of (¢, ¢;) (Theorem 4.2). The precise statement of these formulas
is given in Section 4. We have attempted to make that section self-contained for the con-
venience of the reader. In Sections 2 and 3, we work out the necessary local calculations.

There are several applications of these Waldspurger-type formulas. In Section 5,
we use Theorem 4.1 to obtain results about equidistribution of geodesics on a hyperbolic
3-fold. Brooke Feigon, together with the second author also used this formula to study
average L-values [5]. For more arithmetic applications of such formulas, see for example,
[2], [21], and [19].

Lastly, we remark that this approach can be used to obtain an explicit
Waldspurger-type formula for arbitrary central character and ramification conditions
with any reasonable test vector ¢. The assumptions above are made for simplicity and
are not essential to the methods used here. The central character assumption is present
in [15] and the ramification assumption is made for the sake of the Gross—Prasad test

vector.

2 Non-Archimedean Calculations

We fix F, a non-Archimedean local field of characteristic zero. We let Or denote the ring

of integers in F and let pr denote the prime ideal of Op.

2.1 Split case

We fix an additive character ¥ of F of conductor n(y), i.e. ¥ is trivial on p;"(v’) but is
nontrivial on p;"('/')_l. We take the Haar measure on F which is self-dual with respect to

Y and take the measure

dXXZ L(l, ]-F)_
| x| 7
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on F*. We note that

nly)
2

vol(Or,dx) = vol(Ur,d*x) =q~ 2 .

We fix a unitary character Q of F* of conductor p?.

Suppose now that 7 is an irreducible generic unitary representation of GL(2, F)
with trivial central character. We consider the Whittaker model W(r, ¥) of = with respect

to the character ¢. We take the inner product on W(x, ¥), given by

(Wl,wz)=f Wl(a 1)%(“ 1)dxa.

Koln) = :(a b) eGL(z,oF):cepg}.
c d

Let n() be the conductor of 7, i.e. the minimal n such that = has a Ky(n)-fixed vector.

Let

Then the space 7%"™) is one-dimensional and any nonzero vector in this space is called
a newvector.
Let W, denote the newvector in W(r, ¥) normalized so that W, (diag(e ™", 1)) =

vol(Ur)~!, and hence such that
Z(s, m(diag(e W), 1) W;,) = L(s, n),

where Z(s, W) denotes the local zeta integral of W € W(x, ). For future use we record the
following lemma. The proof is straightforward, using the fact that one may compute the

values of W on the diagonal torus via the relation with L(s, 7) (cf. [6], [18]).

Lemma 2.1. If 7 is unramified, then

L(1,7,Ad)L(1,1F)

_ —1
(Wnr Wrr) = VOI(UF) L2, 1F)

If n(z) = 1, then 7 is special and

1
(Wrrr Wn) = VOI(UF)71 1_—q72 = VOl(UF)ilL(l, I, Ad)
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If n(x) > 1, then

(W, W) = vol(Uz) . O

Given f € C°(GL(2, F)), we define

jn(f)=Z/ (n(ﬁW)<a ) Q_l(a)dxa/ W(b ) Q-1(b) d*b,
w JFx 1 x 1

with the sum being taken over an orthonormal basis {W} of W(x, v).
We now compute J; (f) for certain choices of test function f depending on the
ramification of Q.

2.1.1 Q unramified
The following result is well known.
Lemma 2.2, If fis the characteristic function of Ky(n(r)) divided by its volume, then

- o L/2,7@QL(1/2,7 @ Q")
o (f) = \ARTA .

2.1.2 Q ramified

Let

b (1 wn(9)> .
1

Then the newvector with respect to hKy(n(r))h™! is W = n(h)W..

Lemma 2.3. If f is the characteristic function of hKy(n(r))h~! divided by its volume,
then

_ qfn(sz)L(lrlF)z

o) (W, W)
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In particular, if 7 is unramified,

L(1/2,7 @ QL(1/2,7 @ Q1)

j — 7n(S2)L 1, 1 2 |:|
) =q "L 1) (W, W)
Proof. Note that
a a
W — w(aw_—n(ﬂ))wﬂ
1 1
Hence we have, for s with %is > 0,
a
Z(s, W/,Q)Z/ llf(aw_"(m)W,, ( I)Q—l(a”a's—; d*a
o0 m
w mis—i —n(Q)\ -1 X
= Z W, | ™ |52 V(e ")Q 7 a) d”a.
S 1 lal=g—™
We note that the integral is nonvanishing unless —m = n(y), in which case we have
/ w(awfn(ﬂ))gfl(a) d*a = Q(wn(fl))flf I/J(a)Q’l(a) d*a
|a‘:qn(wi ‘a|:qn(¢:)+nlﬂ)
— Q(w_n(ﬂ))—lL(L lF)qf(n(llan(Q)) / lﬁ(a)Qil(a) da
‘alzqn(prn(Qi

= (") L(1,1p)g M g(Q, v, da).

Hence by [20, (3.4.7)],

2
‘f w(aw'*n(Q))Qfl(a) d*a| =L(Q1, 1F)2q7(n(1//)+n(§2))_
|a‘=qnlu/i

Thus we deduce that

1 L(1,15)2q~mW+n@)  [(1 15)2g— @
~ vol(Ur)? (W, W) T T w)
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2.2 Nonsplit case

We now take E/F to be a quadratic extension of F. Let n denote the quadratic character
of F* associated to E, and let D denote the quaternion division algebra over F. We fix
embeddings of E* into GL(2, F) and D*.

Let 7 be an irreducible generic unitary representation of GL(2, F) with w, € {1, n}.
When it exists, denote by 7p the Jacquet-Langlands transfer of = to D*. We fix inner
products on 7 and np.

Fix a unitary character Q : E* — C* such that Q|rx = w,. We consider the sub-

spaces
Vir)={ven:alth=Q{t)vforallt € EX},
and
Virp) ={venp:nplt)hv=Q(t)v forall t € E*}

of 7 and np, respectively. We know that precisely one of the V() and V(xp) is isomorphic

to C and the other is zero. We denote by n’ the representation such that V(z') # 0 and we

fix a nonzero unit vector e} € V(n’). Let G be the group of which n’ is a representation.
Suppose now that f € C¥(G(F)) and define the distribution

T = / £9) (n'(g)ey, &) dg.
G(F)

We wish to compute J; (f) for a suitable test function. We do this on a case-by-

case basis according to the table below.

b4 E/F Q
Ramified Arbitrary | Unramified

Unramified | Unramified | Unramified
Unramified | Unramified | Ramified
Unramified | Ramified | Unramified
Unramified | Ramified Ramified
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2.2.1 7 ramified

We denote by R,;) an order of reduced discriminant p}"”) containing Og. It is well defined

up to conjugation by E*. We now take f to be the characteristic function of the subgroup
R,f(n) of G(F) divided by its volume. We note that in this case we have e} € (r/)Run, and
hence J,(f) = 1.

2.2.2 7 unramified

We now fix a uniformizer = in F. We fix v € O such that Oz = Oz[z]. In the case that
E/F is ramified, we further assume that 7 is a uniformizer in E. We take
(a +bTrt bNrt )
a+br—

-b a

for the embedding of E < GL(2, F), where Tr and N denote the trace and norm maps.
Denote by n = n(2) the smallest integer such that Q is trivial on (Of + @™"Og)*.

Let
h:<w”Nt )
1

Then for @« = a + btr, we have

hlgh — a+bTrt bw ™™ ,
—bw" Nt a

and hence h™'ah € M,(OF) if and only if a € Or and b € @O, which is if and only if
a € Op + @"Of. Thus R = hM,(Or)h~! is a maximal order in M;(OF) optimally containing
Or + @"Og.

We now assume that 7 is a unitarizable unramified representation of GL(2, F)
with w, € {1,n} as before. We take the Kirillov model for = with respect to an unram-
ified additive character vy, and we denote by vy the newvector in 7 normalized by the

requirement that vg(e) = 1. We take the inner product on 7 to be given by

(v1,v2) :/ v (X)va(x) d ™ x,
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where the Haar measure on F* is normalized to give Ur volume 1. By Lemma 2.1 (and a

similar argument when w, = ), we have

L(1,7,Ad)L(1,1F)

<U0, U()) =

We note that the set of maximal orders in M;(F) optimally containing O + @ "OF

is permuted simply transitively by E*/F*(Or + @ "Og)*. We set v = w(h)vg and

ey = Z Qle) ' ml)v.

a€EX/F*(Op+w"Og)*

We let f denote the characteristic function of R* divided by its volume. Then e,

is a nonzero vector such that 7 (a)e; = Q(a)e; for all @ € E*, and we have

1 ((g)e), e

J = So1m J (@ )

dg.

Clearly, we have

(er, ep) = #(E*/F*(Or + @"Og)*)(€}, v),

and
1 ;. _ (v, er)(er,v)
vol(RX) /RX (z(gler, e} dg = (w,v)
Hence
3 (v, €p)
J.(f) = )
( #E* |F*(OF + @™ Og)*{vo, vo)
We also have
(v,ep) = Z Q) (m (W ah)vo, vo)
a€EX/F*(Op+w"Op)*
=Y w@m > Q)™ | ((h ahvo)um™) du.
Ur

m=0 a€E* |F*(Op+wOg)*
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Note that

2q™, if E/F is ramified;

#E*JF* (O +@"Or)* =1 1, if E/F is unramified and n = 0;

q"(1+q7!), if E/F is unramified and n > 0.

We recall that for v € 7, we have

(n <Z 2) v) (x) = ¥ (bx/d)viax/d).

Suppose we now take « = a + bt € E*. Then we have

hlah — a+bTrt bow™™ .
—bw" Nt a

Hence, when |a| < |bw" N 1|,

1 N(a)/(bw™ N(r)) —(a + bTr(z)) 0 1
h Olh = ’
0 bw "™ N(t) -1 a/lbw™N(1))

and when |bo "N t| < |a],

hlah — a 'N@ bw™ 1 0 ‘
0 a —a b N(r) 1

Thus, when |a| < |bw" N 1|,

bTr N
(n(hilah)vo)(x) =Y (_ (ab—;.n N((-Z)))X> vo <(bw'n((;\ﬁi))2) '

and when |bo" N 1| < |a],

(e (R wh)vo) () = v <ab; ) % <N‘“’X> .

n a2
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We define

1, if E/F is unramified;

elE/F) =
2, if E/F is ramified.

Lemma 2.4. With f as above, we have

- 1 L(1/2, 75 @ Q)IL(2,1F)

J.(f) =
7 e(E/F) L(1,7, Ad)L(1,n)
if Q is unramified and
. q ™ 2 L(1/2, 715 @ Q)L(2,1F)
e = L ]-I ’
H N = smmt Y oA x adna g
if Q is ramified. O

We prove this lemma in the subsequent sections according to the ramification of
E/F and Q.

2.2.3 E/F unramified and Q unramified

In this case, we clearly have J,(f) = 1 and

L(1/2,7g ® Q)L(2,1F)
L(1,7,Ad)L(1,n)

2.2.4 E/F unramified and Q ramified

Suppose now that E/F is unramified and n > 0. Then we have r € Ug and
EX/F*(Or +@"Og)  ={1+bt:be Or/o"Or}U{a+1:a € @Or/w"OF}.
Thus for « = a + bt € Ur with vr(a) < n, we have
((h rah)vo)(x) = ¥ (a bw "x)vola 2x).

Suppose now we fix m > 0. We wish to compute

> Q)™ | (x(h ahvo)um™) du.

a€EX/F*(Op+w"OF)* Ur
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We see that this sum is equal to fi(m)+ fo(m)+ fz(m), where

fitm)= 3" Q1 +b0) 'w@™ | Yubs™™) du,

beOr /pl Ur
fmi= > Qla+1) T wa o™ | ylua'a™™" du,
aepr/p.a#0 Ur
and
fim) = Q(r) g (@™ ) V(uw™ ") du.
Ur
For future use we record the following.
Lemma 2.5.
0, ifk <-1;
/ V(o*u) du = _q+1’ ifk=-1;
U
’ 1, if k > 0. O
Lemma 2.6.

) Q(1+br)1:{_9‘”r ifn=1;

beOp/sh 0, ifn>1.
For0 <k <n,
0, ifk<m;
3 Q(l—i—bt)_l:{ sEs
bk pt 1, ifk=n. O

Proof. It suffices to observe that

Z Q1 +br)t=— Z Qla + 1),

beOr /v aepr/py

that {a+bt:a € Up,bep’}} is a subgroup of Ug for k > 0, and that Q is trivial
on Up. |
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Applying this lemma gives the following formulae for fi(m).

Lemma 2.7. We have

1 1 _1.
ﬁ(o) — 17q—1 +Q(t)qfll lfn 11
and
Flm) = —vol@™)Q(z), ifn=1;
' 0, ifn>1

when m > 0. Also,

if m < 2n;

0,
fé(m) = { mfzn)’

Q(t)vgl if m > 2n.

If n =1, then f3(m) = 0 for all m; otherwise, if n > 1 and m > 0, then

0, ifm < 2n —2;
film) = | Q(r) 15, ifm=2n-2;
—QT)vol@™2"+2), if m > 2n — 2.

Thus we see that (v, ) is equal to the sum of

— + Q(«/E);wn(w”‘l)vo(wzn‘z),
1—gq q—1

and

Q(Wd) Z (0 (@ vo(@™ 2" vo(@™) — wr (@™ vgl@™ ) vg (™).

m=2n

1

Let {B1, B2} denote the Satake parameters of =. We have 8, = w,(w)p; " and

m+1 _ gm+l
—m Py 2

B — B2

vl@™) =q

155
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for m > 0. Moreover, since n is unitary, we have
vol@™) = wy (@) "vela™).
Thus

w0z (@@ ™ 2 vg(@™) — wr (@™ g (™ 2 ) vg (@m-1)

is equal to

—tmen @x(@") _ _ _ _
—q ( )(IB1 — /32)2 (/31,32 2n+1 + /31 2n+1132 _ ﬂz 2n+2 _ /31 2n+2)’
which equals
_q—m+2n—1a)ﬂ(w_—n-&-l)vo(wZn—Z)‘

So we see that

> (0x@Mvol@™ M up(@™) — wq (@ vo(@ ™2 ug @™ 1))
m=2n

1
——— @

—n+1)v0
q—1

(w_Zn—Z).

Hence

1

(b = 3 e b, vo) = 7.

and we may conclude that

1 1 L(2,15)
T 1-qlq"1+q ) LA,x, AdL({, 1)
,L(1/2,75 ® Q)L(2, 15)
L(1,7, Ad)L(1,7)

T ()

=q ""L(1,n)
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2.2.5 E/F ramified

We now assume that E/F is ramified. In this case, a set of representatives for E*/F*(Of +

ZUnOE)X is
{1+br:beOp/pp}U{aw +1:a € Op/ph}.
For o = 1 4+ bt in the first set with vr(b) < n, we have

(m (R eeh)vo) (%) = Y (b " x)vo(x),

and for « = aw + 7 in the second set with vr(a) < n, we have
(r(h tah)v)(x) = ¥(a o " ' x)vy(wa2x).
We wish to compute, for m > 0,

> Q@) | (x(h lahvo)uz™ du.

a€E* [F*(Op +@"OF)* Ur

The contribution from the first set of representatives is

fitm)= )" Q1 +b1)  wl@™ | Yubs™ ™ du,
beOr /pl Ur

whereas the contribution from the second set is the sum of

folm) = Z Qlaw + 1) vl@™ 'a™?) Ylua o™ du
a€Or [p},a#0 Ur
and
fim) = Q"™ + 1) Lypl@™ 2 Y(uw™ ) du.
Ur
Lemma 2.8.

0, if0<k<n-1;

Z Ql+4+ar)=1 -1, ifk=n-1;
a€Or/pyvrl@)=k 1, ifk=n.
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The above lemma gives the following.

Lemma 2.9. We have fi(m) = vg(@w™) if n =0and if n > 0,

1 : — 0
fitm) = | T HT =0
0, if m > 0.
If n =0, f3(m) = 0; otherwise
0, ifm<2n-1,;
folm) = Q(r)_lq%, ifm=2n-1;

—Q(r) Tvgl@™ 2, ifm > 2n — 1.
Lastly,

0, m<2n+1;

Q) tvglw™ ), m>2n+ 1. O

falm) = !

First suppose n = 0. Then we have
oo [o.¢]

(v, er) Z vol@ ™vol@™) + Q(r) ! Z Vo™ V(™).

m=0 m=1

We note that in this case we have Q(r) = 1. We denote by {«, o'} the Satake parameters

of =. Then we have

and hence

Vol ™) = aq’%vo(wm) + q’mTHa’m’I.

Therefore

Q1)

cer) = (1+ Qrdaq?)(vo, v0) + —
(v, ep) = ( T)arq ™ 2)(vo, vo) @qz(1 —a~lag )1 —a~la-lq71)
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We recall from Lemma 2.1 that

L(1,7,Ad)L(1,1F) (1-q72)
L(2,1F) T (1 —oa2q V)1 —a2¢7Y)(1 — g 1)2’

(Uo, v0> =

which yields

_L(1/2,7: ® Q)

(v er) = —— P
When n > 0, we have
, 1 3 vo(w—Zn—l)
(Urej/'> = 1 q_l + Q(7) C]T
° — ——
+Q(0)7 D (vol@™ Mol ™) — volw ™ (™).
m=2n

As in the case that E/F is unramified, one has

00 2n—-1
Z (vo(@™ M vo(@ ™) — vol@ ™ 2" gl ™)) = _UO(qw— 1 )'
m=2n

and hence

1 L(1/2, Q
(v,e’%): — ( / g & ),
1—-g! 1—g!
since L(s,7r ® Q) = 1.
Thus, in all cases one has
L(1/2,7mr ® Q) L(2,1F)

jrr(f) =

2q™(1 —q~1) L(,m, Ad)L(1,1F)
1 L(1/2,7 @ Q)L(2,15)
T 2gn L(1,7, Ad)

This concludes the proof of Lemma 2.4.

159



160 K. Martin and D. Whitehouse
3 Archimedean Calculations

For F =R or C, let ure, denote the Lebesgue measure. When F =R, let dx = urep and
d*x=L(1,15) % = X When F = C, let dz = 2uurep and d*z = L(1,1¢) 22 = 242 We fix

Xl — |xl° : zlc T ZZ
additive characters of R and C, given by ¥ (x) = 7! TrrrX,

3.1 L-factors

Let us first recall the definition of Archimedean L-factors. The real and complex gamma

factors are defined, for s € C, by
Gi(s) =n"2l (%) , Gals) = 2(27) 75T (s).
If 1 is a character of R*, then one can write this character as

ulx) = |xly sgn™(x)

with r € C and m € {0, 1}. In this case, one defines
L(s,u) = G1(s+1r+m).
On the other hand, if u is a character of C*, then we may write u in the form
ulz) = |21 <§>m

with m € %Z. Here the local L-factor is defined as

L(s, ) = Gals + 1+ |m|).

3.1.1 Principal series representations

Suppose now that 7 is an admissible representation of GL(2, F) with F = R or C. If r is

in the principal series, then we can write 7 = 7 (u;, u2) for a pair of characters x; and s,
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and the standard and adjoint local L-factors are

L(s, ) = L(s, u1)L(s, o),

L(s, 7, Ad) = L(s, p1jay ") L(s, 17)L(s, 7" ).

3.1.2 Discrete series representations

Suppose now that 7 lies in the discrete series of GL(2, R) with weight k. Then n is of the
form m = o (uy, u2) with p,(t) = |t|" and uq(t) = |t|2 sgn™(t) with s; — s, =k — 1, and

0, if kis even;
1, if kis odd.

We denote by A the character of C* given by A(z) = 2z 2%, so that = corresponds to the

two-dimensional representation of Wk induced from the character A of W;. Then
L(s,7) = L(s, ) = Gols + s1),
and

L(s,m,Ad) = G1(s + 1)Ga(s + k — 1).

3.2 Whittaker functions

Suppose F = R or C and let 7= be an irreducible generic unitary representation of GL,(F).
We consider the Whittaker model W(x, ¥) of = with respect to the character ¢ fixed

above. We let
a
Wia) := W( 1)

for W e W(r, ). We let K denote the standard maximal compact subgroup of GL(2, F),
and we let T denote the diagonal torus in GL(2, F). We take the inner product on W(r, v)
to be given by

(M, Wr) = Wi(a)Ws(a)d ™ a.
FX
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We let x : F* — C* be a character of F* which we view as a character of T by

a
: (@ab™).
it ) e

Let W be a K-type of =. Denote by W% the subspace of W on which T N K acts
by x~!. Then WTX is at most one-dimensional [18, Proposition 3]. Suppose that W is the
minimal K-type of = such that WT # 0. Then for %i(s) large,

Lis,m ®x) = / Wia)x(a)lals *d*a
0

for some W € WTX, To see this, observe that we may reduce to the x = 1 case by consid-
ering the representation 7'(g) = (r ® x)(g) := 7w (g)x(detg). When x = 1, this is precisely
Proposition 4 of [18]. We denote the element W by W, ,. When y is trivial, we write W,
for W, ;.

3.3 Split case

Suppose F =RorCand E = F @ F. Letxw be anirreducible generic unitary representation
of GL(2, F) with trivial central character. Regard T = E* as the diagonal torus Ain GL,(F)
and let Q : T — C* be a character such that Q|g~ is trivial.

Let W(r, ¥) be a Whittaker model for = and let {I#}} be an orthornormal basis. We

consider the distribution

T (f) = Z/FXn(ﬂWi(a)Q—l(a)an Wi(a)Q-(a)d*a.
w;

Fx

Having fixed = and 2, we set W = W, o. We can and will choose f € C°(G) such
that 7 (f) is the orthogonal projection onto (W). Then we have

o . W) Ha)d*al?
Jﬂ(f):‘fF (@)~ !(a)d>a .
(W, w)
Note that our choice of measures and the fact that |W(ua)| = |W(a)| for |u| = 1 give

(w, w) = |W(a)|2dxa=cF/ |W(a)|*d*a,
0

Fx
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where cr is 2 if F = R and 4 if F = C. Thus we have

~ o, L1/2,7®QL(1/2,1 @ Q")
J(f) = AT . (1)

Presently, we will rewrite (W, W) in terms of the adjoint L-value L(1,7, Ad) and obtain
expressions for j,(ﬂ in terms of L-values. To compute (W, W), we will make use of the
following result (cf. Lemmata 17.3.2 and 18.2.1 of [12]).

Lemma 3.1 (Barnes’slemma). ILet F=RorCandseti=1if F=Randi=2if F =C.
Let W, and W, be Whittaker functions on F such that

/ Wi(a)laly 120%a = Gi(s + a)Gils + B)

/ Ws(a)laly 2d%a = Gi(s + y)Gils + 8),
for N(s) sufficiently large. Then

/ Wi (@) Ws(a)lal d”a
0

“1g G(s+a+y)G (s+a+8)Gils+ B+ v)G; s+ﬂ+5)
Gi2s+a+pB+y+9)

= (27n)

for N(s) sufficiently large. O

3.3.1 Real case

Suppose F =R.

We fix a unitary character Q2 of R*, we write Q in the form
Q(x) = |x|* sgn"(x),

witht e Rand n € {0, 1}.
First suppose x is a principal series representation for GL,(R) with trivial central
character. Then it must be of the form 7 (| - |" sgn™, | - |77 sgn™) with m € {0, 1}. In this case,

we have
Ls,t®@Q 1Y) =Gi(s+1—it +emn)Gils — 7 —it +emn),

where ¢ =1 — Smn-
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With W as above, we see that
o0
/ Wa)la|* ?d*a = Gi(s + 7+ emn)G1(s — T + emn).
0

By Lemma 3.1 and the fact that r is either purely real or imaginary, we have

G1(1 +2r + 261, 1) G1(1 — 27 + 281, 1) G1(1 + 24, ,)?

(W, W) =4
G1(2 + 4emn)

We may simplify this by considering the two cases ¢, , =0 and ¢, , = 1 sepa-
rately. In the first case, one evidently gets (W, W) =47G1(1 + 2r)G1(1 — 2r). If epyn = 1,
the relation G,(z + 2) = 2= G, (2) yields

1 — 4r?

(W, W) = %G1(3+2r)61(3—2r): G1(1 421G, (1 — 27).
Using L(1, 7, Ad) = G1(1 + 2r)G;(1 — 2r), we may write both cases together in the

equation

1 — 4r?

) L, 7, Ad).

When  is trivial, we obtain

1 — 4r?
(WJT!WT[)=47T 32

) L(1, 7, Ad).

T2

For future comparison, we will also want to write jﬂ (f) with a factor féf}i; , which
equals % in this case. The inner-product formulas, together with equation (1) yield the

following lemma.

Lemma 3.2. For 7 in the principal series with parameters as above and with f chosen

as above, we have

J.(f) = ( 327 )’” L(2,15) L(1/2,7 @ @ )L(1/2,7 ® Q)
I — 4r2 L(1,1F) L(1, 7, Ad)

1—4r2\"" " L(1/2,7 @ Q YL(1/2,7 ® Q)
327T2 (Wr[r er) ’
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Now suppose 7 is a discrete series o (| - |, | - |~!) with trivial central character. (In
particular, k = 2s; + 1 is even.) Then L(s, 7) = G1(s + s1)G1(s + s; + 1). In a similar manner

as above, we see that

(W, W) = 221G (1 + 251)G1(2 + 281) = 2%7%Go(k) = 22 %7 L(1, 7, Ad).

Alternatively, one may compute the inner product directly in this case as one has an

explicit expression W(t) = 2|t|%+1/2¢=271tl,
Lemma 3.3. For 7 discrete series of weight k and with f chosen as above, we have

W L(2,1p) L(1/2,7 @ Q" NL(1/2, 7 @ Q)

HN =270, L(1,7, Ad)

4L(1/2,7r RQ NHL(1/2,7® Q)
(W, W) ' O

3.3.2 Complex case

Suppose F = C.

We fix a unitary character Q2 which we write as

n
2

o _n . Z
Qlz) = Z%-‘rztz S+t _ |Z|z&: <:>
z

with n € Z and t € R. Again, since w, = ng/r = 1, we may write r = 7(w, u~!) where

Z %
z)=|z|L | =
M( ) | |c (2)
with r € Cand m € Z. Then L(s, 7 ® Q7!) equals
L(s, uQ YEL(s, n Q7Y = Gols+r — it + |m — n|/2)Gals —r — it + |m + n|/2).

So

/ Wia)lali ?d*a = Gals + 7+ |m — n|/2)Gals — r + |m + n|/2).
0
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Hence by Lemma 3.1, we may write (W, W) as

- G2(1 +20r + |m — n|)G2(1 — 2%r + [m + n|)G2(1 + 2iIr + 1)G2(1 — 2iIr + £)

32
G2(2 +2¢)

’

where £ = (lm — n| + |m + n|)/2 = max{|m|, |n|}.
Both in the case of complementary series (r € R and m = 0, so £ = |n|) and non-

complementary series (r € iR), we obtain

647 2¢ \!
w, = — Go(l1+2 0)Go(1 — 2 £).
( w) (1+2€)(|m_n|) 21 + 2r 4+ £) G r+¢)
Since
1 14+ 2\m| /2\m
LU, 7, Ad) = 2 Go(1 + 2r + MGl — 20 + jm)) = 22 gy gy
T 6472 |m|
and ig}ﬁ = gzg; = 2, we have the following result.
Lemma 3.4.
~ (1+20) [ 2¢ ¢ 472 L(2,17) L(1/2,7 @ Q" V)L(1/2,7 ® Q)
T (f) = —— l_[ - X ,
2 \m-n|) " . j2—arz " L(1, 15) L1, 7, Ad)
j=Im|+1
or alternatively,
~ 1+2¢ 2¢ 2/m|\ "} ¢ ar? L1/2,7 @ Q YL(1/2,7 ®Q
F.(f) =16 + |m)| N 1—[ 'n N (1/2,7 ® )JL(1/2, 7 ® ).
1+ 2im|\|m — n| [m| j% —4r? (W, W)

j=lml+1

O

3.4 Nonsplit case

In this case, we have F = R and Q a unitary character of C*. We write Q(z) = (zz~!)" with

ne %Z. In this case, we study the distribution

T (f) = flg) (x(g)e,. e) dg,

G(F)

where €. is a unit vector in 7 such that n(x)e}, = Q(a)e} for all « € C*. We wish to pick

out the vector of weight 2n in 7 or n’. In this case, we just take f to be some smooth
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compactly supported function such that f(k;gk;) = Q71(k;)Q 7! (k2) flg) and = (fle} = €.
Clearly, then J,(f) = 1.
We note that if w, = 1 then we have n € Z, and if w, = sgn then we haven ¢ %Z \ Z.

For later use we record the L-values

L(2,15) = L(1,sgn) = G,(2) = %

We recall the definition of the beta function

()T
B(x,y) = _y)
Fx+yp

First we assume that 7 = 7 (u, u~!) is a principal series representation or that 7 =
7, u~ ! sgn). We write u(t) = |t|" sgn™(t). We define A = 1/4 — r?. Then ng = n(ME,,uEl)

with ug(z) = z'Z". Hence we have

L(1/2,75 @ Q7Y  Gu(1/2471+|n))Ga(1/2 — 7 + |n))

L(l,7, Ad) G1(1 + 2r)G(1 — 2r)

r1/24r+ n)r1/2—-r+n|)

_ —2|n|
= 2(27) T(1/2+n0(1/2—1)

We note that when w, is trivial so that n € Z, then we have

In|—1
=[]a/2+r+p1/2-r+)

j=0

In|—1

= [Tx+jG+0.

j=0

r1/24r+|n|)l'(1/2—-r+|n|)
r1/24+nr/2—-r)

When w, is trivial, we have

Gi(14+2r+2m)G;(1 — 2r + 2m)G,(1 + 2m)?
G1(2+4m)

(Wrr/ Wrr) =4

41“(1/2 +r+m(1/2 —r+mI(1/2 + m)?
at2mT(1 + 2m) ’
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Hence when m =0,
(WT[! Wyr) = 4F(1/2 + T)F(l/2 — T‘),
and when m =1,

(W, W) = ——T(1/2 + AT (1/2 — 7).
272

Hence we get the following result.

Lemma 3.5. For 7 in the principal series with trivial central character and with f as

above,

) = L(1/2,7mz ® Q)L(1,sgn) y 271(27)2IM
T L, 7w, AD)L(2, 15) [T+ j( + 1)

and

j (_f) _ L(1/2,7TE R Q) " 21_m)xm(27'[)2|n‘_2m
” W Wo) - T 0+ 7+ 1) O

In the case that w, = sgn, we have

G1(24+2nG,(2 —2r)G1(1)G1(3)

w, wW,) =4
( ) G @

— 211+ nra .
T

Hence

L(1/2,7£ ® Q) F(1/2 47+ [n)T(1/2 — 7 + [n])

_ —2|n|
W, W, e T(L+7r0(1 —7)
In\*%
= @) [Ta+r+ )0 -r+ )
j=0

3
In|—3

= (2m) 2" [T (@ + j)> = .
j=0



Central L-Values and Toric Periods for GL(2) 169
Lemma 3.6. For 7 as above with w, = sgn and f chosen as above, we have

7 = L(1/2,7mz ® Q)L(1,sgn) y r(1/2+rr(1/2—-r) (27)2ml
” L(1,7, Ad)L(2,1F) T(1+nri-r) zﬂ'j’igg((l £ 2 -1

CL1/2,7:99) (277)2In!

X 3 .
W, W) T2+ )2 — 72)

O

Next we take 7 to be discrete series of weight k. In this case, 7 corresponds to

Indw‘;(zi‘l)%l. Hence we have 7z = n((zz—l)kz;l, (zz~1)~*7"). Thus we have

G2(k/2 + In))G2(~k/2 + 1+ [n)), if |n| > &1;

k—1

L(1/2,m, @ Q") = .
Gak/2 + In|)G2(k/2 — |n]), if |n| < 5=.

On the other hand,

L(1,7, Ad) = G1(2)Gy(k) = %Gz(k)

and

(W, W,) = 2%7%G, (k).

Hence we get

L(1/2,1® Q)

L7, ad) — 27Blk/2+Inlk/2—nl),

if In| < 5!, and

LU/2,75®Q) _ )ik 21l
L7, Ad) A S B2+ Inl, 1~ k/2+ n),

: k-1

Lemma 3.7. For x in the discrete series of weight k and with f as above,

P = L(1/2, 7 ® Q)L(1,sgn) 1
S T, Ad L2, 15) . 27Bk/2+ |nl, k/2 — n))

L(1/2, 7z ® ) 8 2
(W, W) 2kB(k/2 + |n|, k/2 — |n))’
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if |n| < %51, and

J(f = L(1/2, 7 ® Q)L(1,sgn) 8 (277)2n-k k|
b ~ L(1,7, Ad)L(2,1F) 2n!Bk/2+|n|,1 —k/2+ |n|)

L(l/2, g ® Q) 22|n|—2k+1n2\n|—k+1k!
— X ,
(We, W) miB(k/2+Inl, 1= k/2+n])

: k-1

4 Global Result

Suppose now that F is a number field and E/F is a quadratic extension. We denote by Ar
(resp. Ag) the discriminant of F (resp. E) and by dg,r the absolute norm of the relative
discriminant of E/F. We take 7 to be a cuspidal automorphic representation of GL(2, Af)
such that w, is either trivial or 5, the quadratic character of F*\A% associated to E/F
by class field theory. Let

Q:EX\A} - C*
E

be a unitary character such that Q|,x = w,. We assume that = and 2 have disjoint rami-
fications.
Let g denote the base change of 7 to an automorphic representation of GL(2, Ag).

The L-function of ng ® Q satisfies a functional equation
L(S/T[E ® Q) = E(SI'T[E ® Q)L(l — ST ® Q)

We assume that ¢(1/2, 7r ® Q) = +1. In this case, there is a unique quaternion algebra
D/F such that

e FE < D;
e 7 transfers to 7 on D*(Ar); and
. HomAz(nD, Q) #0.

Regard G = D* as an algebraic group over F. Let f =[], f, € C>°(G(Ar)). Define

(2 (Ae))AE) " dt/ o621 dt,

*Ap\Ap EXAp\Ap

Jnu(ﬂ=§/E

where the sum is taken over an orthonormal basis of the space of 7 ”.
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We fix an additive character ¥ : F\Ar — C*. Let S denote a finite set of places
(including the infinite places) of F outside of which everything is unramified. Let f €
CZ(G(Ap)) be a function of the form f= ([],.s /i) f, where f5 is the characteristic
function of K5, a fixed maximal compact subgroup of G(A3). Following [15, Theorem
2], and the appendix to this paper when 7 is dihedral with respect to E, an explicit

factorization of the distribution J,»(f) is given by

Ls(1,1,)L5(1/2, 78 ® Q)
L5(1, 7, Ad)

’

1 -
Jnn(ﬂzaanu(ﬁ)x [] e m,v)2L0,n,) %

veS . veS
inert in E

where the distributions J; ( f;) are defined as in the previous sections. Here the measures
on G(Ar) and Ay E*\Aj are fixed as in [15, Section 3.1]. On A} and Ay we take the product
of the local Tamagawa measures, on E* we take the counting measure, and on G(Af) we
take the product of the local Tamagawa measures multiplied by L5(2, 15).

Take Y = ¥ o trr)qo Where ¥ denotes the standard character on Q\Aq, so that

1, if v is Archimedean;
8(11771“%): _ nlp)tny) . . .
g > , ifvisnon-Archimedean.

Here n(n,) (resp. n(y,)) denotes the conductor of 5, (resp. ). Similarly for a finite place
v of F, we define n(mw,) to be the conductor of 7, and we define n(2,) to be the smallest
integer such that Q, is trivial on (Of, + @**/Og )*, where w, denotes a uniformizer in
F,. We note that

1_[ qlr)l(Qu) =./clQ),

V<00

where ¢(2) denotes the absolute norm of the conductor of Q.

4.1 Test function

We now define a test function

f=[] £ ecGa.

At a finite place v of F, we take R(r,) to be an order of reduced discriminant pgf”“) such that
Rir)) N E, = O, + wv"‘Q")OEv (see [8, Section 3]). We then take f, to be the characteristic

function of R(r,)* divided by its volume.
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At an infinite place v of F, let K, be a maximal compact subgroup of D such that
K, N E) is a maximal compact subgroup of E) — DX. Now let ¢, be a vector of minimal
weight such that n,(t)p, = Q,(t)p, for ¢t in K, N EX. Then ¢, is determined up to a scalar
factor. We choose f, such that 7,(f,) is an orthogonal projection onto the space (g,).

Thus, for such f we have

|/ pl)()" dt|?

2
lo, ¢l @

Jer(f) =

where ¢ € 7P is a nonzero vector which is invariant under R(x,)* at each finite place v.
Furthermore, at places v where E,/F, is ramified and n(r,) > 2, we make the requirement
that E acts on ¢ by Q,. At the infinite places of F, we have that K, N E¢ acts on ¢ by 2,

and ¢ lies in the minimal such K,-type.

4.2 Local constants

We consider the Whittaker model for = with respect to the character ¥ = ¥y o trpq.

Explicitly for ¢, € m, one defines

1 x
W, (9) = / Pn (( )g) ¥(—x) dx.
F\Ap 0 1

The Whittaker functions factor and we take for each place v of F the Whittaker function
W, € W(m,, ¥,) defined above. Take ¢, € 7, so that

VV‘prr = l_[ an'
Then we have [15, p. 53]

Wy, , Wy,)
-, 00) = 2L5(1, 7, A M
(¢ ¢x) (1,7, Ad) [ | (L1r)

veS

4.2.1 Non-Archimedean constants

First suppose that v is non-Archimedean. The calculations in Section 2 give the following.

When v splits in E, we have

] L{/2, 75 ® %)L{1 1) |1, if , is unramified;
L, 150 ) = H(/27E @ 2)L(L 17,) {

(Wy,, Wy,) q; "L, n,)?, if Q, is ramified.
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When v is inert and unramified in E, we have

_n) _ L(1/2,7, ® Q,)L(1, 15,
LL,n)g * Jo(fy) = v/ ”(’;, W))( )

1, if 7, and Q, are unramified;
q; " L(1,n,)%, if Q, is ramified;

L(l,r],,)
t(11g,)"

if 7, is ramified.

When v is ramified in E and 7, is unramified, we have

) _ o i) L(1/2,75, ® Q,)L(1,1F,) 1, if m, and Q, are unramified;
q Wl = . . .
! i (W, Wr,) q; " L(1,n,)%, if Q, is ramified.

When v is ramified in E and 7, is ramified, we have

: ,m#u'j . L(1,15) ) 2(1~|—qv_1)_1, if n(r,) =1;
T T w20 -g), it =2,

We also define certain subsets of the finite places of F,

S(2) = {places of F above which Q ramifies},
S (, E) = {places of F where = ramifies but E does not},

S,(, E) = {places of F where both 7 and E ramify}.

For v € Sy(, E), we define

We also set

Ram(r) = {finite places v of F such that x, is ramified},

S'(r) = {v € Ram(x) such that n(r,) > 2 or n(r,) = 1 and v ramifies in E},

and e,(E/F) to be the ramification degree of E/F at v.
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4.2.2 Archimedean constants

We write the infinite places of F as

z:c}:o = 2:Il’\:,sp | 2:I}{?,in 1 Eg'

with the sets on the right-hand side being the places which are, respectively, real and

split in E, real and inert in E, and complex. For each place v € £, write

L(1, 7, Ad)L(1, n,)
L(1/2,7g, @ 2,)L(2,15,)

C,(E,7,Q) = e, E/F)J, (f,)

and

(W’Tv ! Wﬂv)

C/(E,7,Q) = e“(E/F)J””(ﬁ’)L(l/z,nE,v S QL 15)’

where e,(E/F) = 2 if v is inert in E, and e,(E/F) = 1 otherwise. The expressions below
for C,(E,w, ) and C,(E, 7, 2) all come immediately from the lemmata in Section 3.

Suppose first v € g o, so E, = R ® R. Write , in the form

Q,(x1, %) = (Ix1" sgn™ (x), | x|~ sgn™ (x,))

with t € R and n, € {0, 1}. Then

872\ A M
Cy(E, m, Q)= , CLE,m, Q) =4(_—
Ay 82

if 7w, = w(wy, u; ') is a principal series, with Laplacian eigenvalue A, and ¢, € {0, 1} ac-

cording to u,Q, = | - |"sgn®. If 7, is a discrete series of weight k,, then
C,E,n,Q) =2k, C/(E,7,Q) =4

Now suppose v € £, so E, = C ® C. We may write

Qulz1,22) = ((zlz'l)“ <ﬂ> " (27 (ﬁ)_ )
Z1 Z2
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with ¢ € R and n, € Z, well defined up to a sign. (The constants below do not depend
upon this sign). Say =, is a principal series of weight m, with Laplacian eigenvalue 1,
and let £, = max(m,, |n,|). Then

4
1 24, d 472
CE,m,Q=(=+¢ || S
B8 <2+“><|mv—nv|). 4+ -1
J=my+1

and

1+2¢, 20, om,\ " & 472
C;(E,n,9)=16n+—( >< ) I1 T

L+2m, \Imy —n,|)\m, ) 0 4k + %=1

Finally, consider v € £f ;.. Then E, = C and we write

z n,
Q, Z <T>
z

with n, € %Z, well defined up to a sign. First suppose m, is a principal series with wy,
trivial. We write 7, = m(uy, u;!) with w, = |- |7 sgn™ such that m, € {0, 1}, and we set
Ay =3 —rZ Then

(1, |—1

ColE,m, Q) = @n)*™ TT O +jG+107,

j=0
[n,|—1

CoE,m, Q) =227 2m)?™ =2 TT (0 + jG+ 1)
j=0

If w, = sgn, then

F(1/2+7‘U)F(1/2—rv) (27-[)2‘7%\

rl+r)C1-=r, H‘J’i\l—% (j2 — r2)

C,E,7,Q) =2

’

1
[nyl—3

1 -1
C/(E, 7, Q) = 2(27)*m™! | | Ay W—— ,
JE, T, Q) (27) 1 (J p
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1
4
function, then

where A, = ;7 —r2. If 7, is a discrete series of weight k, and B(x, y) denotes the beta

C,(E, 7, Q) = (nBlky/2 + Ny, ky/2 — In, )71,
CLE, 7, Q) = (252B(k,/2 + n,|, ky/2 — [n, )

when [n,| < 5, and
(27)2m o, |
CE,m, Q)= ,
ny!'Bk,/2 + |n,|,1 —k,/2 + |n,|)
277)2Iml—k+1E |
CL(E,7,9Q) = 2m) :
2k"71nv!B(kv/2 +n,l, 1 — kv/z + |nv|)
k-1

when [n,| > %=

4.3 Final formulas

Let S'(w) be the complement of the set of finite places of F where either 7 is unramified,
or else n(r,) = 1 and v is unramified in E. Then the above calculations give the following

results.

Theorem 4.1. The quantity

[ o) () dt|*
(@, )

is equal to

LS"(1/2, 715 @ Q) NIN
X
LS™)(1, 7, Ad) 2/cQ)Ag

xLao1,n? x [] e(E/FILA,n)x [] C.E 7, Q.

veRam(r) vexk

Here the measure on the group G(Ar) is taken to be the product of the local Tamagawa

measures multiplied by LRa™)(2,15). O

Theorem 4.2. The quantity

|/ el)1(t) dt|*
(@, ¢)
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is equal to
LSZ(”'E)(I/Z,NE Q) 1 2 Ls,xm(1,n)
X X Lg)(1,n)* x —————
(@, pz) dg/rclQ) Lsiwm(l 1r)

x ] ¢@)x []ClE .

vES (1, E) vexl

Here the measures on the groups G(Ar) and GL(2, Ar) are taken to be the product of the

local Tamagawa measures. O

5 Equidistribution

One application of central-value formulas is to prove statements about equidistribu-
tion using subconvexity bounds for L-functions. The relevant subconvexity bounds, in
the case of a general number field, have been established by Venkatesh [23] for GL(2)
L-functions, and announced by Michel and Venkatesh [17] for twisted GL(2) L-functions.
(We refer to the latter paper for an introduction to equidistribution and subconvexity.)
While it is known that equidistribution results follow in principle from Waldspurger’s
formula (see [3] for one instance), the necessary details have not been written down in
most cases.

In any event, an explicit formula such as Theorem 4.1 allows a more immediate
derivation of equidistribution from subconvexity. This has been already carried out in
several situations. For example, see [11] for “sparse” equidistribution of Heegner points
on Shimura curves and [19] for equidistribution of individual geodesics on a modular
curve. These results use, respectively, the explicit central-value formulas in [27] and [19]
when F = Q and E/F is imaginary quadratic and real quadratic.

The generality of Theorem 4.1 allows one to consider equidistribution of toric
orbits in a variety of situations. However, to keep details to a minimum, we will only
deduce equidistribution results in a specific example of a hyperbolic 3-fold. Specifically,
let F = Q(i) and K be the standard maximal compact subgroup of GL,(Ar). The hyperbolic

3-fold we will consider is
X = PSL,(Z[i)\H® = Z(Ar) GLy(F)\ GL(Af)/K.

Now fix a square-free d € Oy = Z[i] and let E = E; = F(v/d). Then we may take
T4 to be a standard torus obtained by an optimal embedding of E; in GL; /F. The key
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point here is that Oy =~ Ty4(Or,) embeds into K, for each finite place of F. For v = oo, let
zq € GLy(AF) such that K4, = 24 U(2)z(§1 N T4,00(AF) is the maximal compact subgroup of
T4,00(AF). Then

Kg = Zdl{Z(;1 = l—[ OEU X Kg,00

V<00

is the maximal compact subgroup of Ty (AF).
The relative discriminant ideal Ag,r is generated by oqd where o4 depends only
upon the congruence class of d mod 4. In particular, |Ag| is a bounded multiple of |d|.

We define the geodesics of discriminant d in X to be the components of

Xq = Z(Ap)Ty(FI\Ty(Ar)zq /(K N Tq(AF)zg)
= (Z(Ap)Tg(F\T4(Ar)/Kg)zg € X.

A consequence of the requirement that T; < GL, be optimal is then that the number of

such geodesics is the class number kg of E. More precisely, we can write

Xq = (EX\AE/ (H O, x Kd,oo)) za= | v

V<00 acHg

where Hg denotes the ideal class group of E and the individual geodesic y, is the fiber
above a in the quotient on the left-hand side (identifying E*\A; 5 /], ., O, with Hg as
usual).

Fix a Haar measure on G = GL,(Af). This gives a natural choice of measures on

subspaces and quotients.

Theorem 5.1. Let X; be the collection of geodesics of discriminant d in X. As |d| — oo

along square-free Gaussian integers d, the family X3 becomes equidistributed on X. O

To prove this theorem, by Weyl's equidistribution criterion it suffices to show
that the Weyl sums

1

Wip, d) =
W d) = otz ¢

tend to O as |d| — oo for ¢ running through a dense subspace of C(Z\G/K). Since

cusp forms and wave packets of Eisenstein series span a dense subspace of C°(Z\G/K),
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it suffices to check Weyl's criterion for ¢ running through a basis of eigenforms in
L*(Z\G/K).

We remark that this theorem follows from the work of Clozel-Ullmo [3] and
Venkatesh [23], though to the best of our knowledge it was not previously stated. Clozel
and Ullmo establish the necessary bounds for Wip, d), assuming subconvexity results
when ¢ is a cusp form. Shortly thereafter, Venkatesh showed the necessary subconvexity

results.

Proof. Suppose ¢ € L%(Z\G)X is a cuspidal eigenform occurring in the representation =
which is normalized, so that (¢, ¢) = 1. Note that n(z4)¢ is a newform for n, satisfying

the conditions in Section 4.1. By construction,

1
vol(Z(Ap)Ty(F)\T4(AF)) ./Z(AF)Td(F)\Td(AF)

Wip,d) = w(zg)p(t)dt.

Using Theorem 4.1 with Q@ = 1 gives

L(1/2,71E)

Wip, d)|* = '
(Wle, A = ) A Ty P\ Ty (B 2T

where c(r) is a constant depending only on . Since

L(1/2,mg) = L(1/2,7)L(1/2, 7 ® x4)

where xq = ng/r, we have

L(1/2,7 ® xq)

Wip, d)? '
Wi, d)|” < vol(Z(AF) Ty (F\Ty(Ar)2/]d]|

Now note that

vol(Z(AFp)Tg(F\Tq(Ar)) < ress—1¢r(s) < Lan(1, xa),

where Lg, denotes the finite part of the L-function, and < means equality up to an

absolutely bounded nonzero constant. Then Siegel’s lower bound gives

vol(Z(Ap)Ty(FI\Ty(AF)) > |d| ¢
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for any € > 0. Hence the subconvexity result [23]
L(1/2,7 @ xa) < Lan(1/2,7 ® xa) < |d|'/?71/%
yields
|Wip, d)|* <« |d|*71/* - 0,

as |d| — oo.

For ¢ an Eisenstein form, we refer to [3]; the spirit of the argument is similar. W

Theorem 5.2. Let y; be a geodesic of discriminant d on X. Suppose one has the sub-

convexity result
L(1/2,7 @ 7)) < |e(x)|V?°,

where 7 is a fixed automorphic representation of GL,(Afr), 7’ is an automorphic repre-
sentation of GL,(AFr) with (finite) conductor ¢(x’), and § is a positive constant. Let ¢y > 0.
For a sequence of d — oo along square-free Gaussian integers such that hy < |d|¥/?~,
the family y4 becomes equidistributed on X. O

Such a subconvexity result as is required by the theorem has been announced
in [17]. (In fact, we only need the subconvexity result for representations =’ that are
induced from characters along quadratic extensions.) We remark that in general one
needs some condition, such as the one above on the growth of the class number, to

ensure equidistribution of individual geodesics (see [4]).

Proof. As before, it will suffice to show that

1
vollya) J,, ¢

— 0,

as d — oo for ¢ ranging over an orthonormal basis for L?(Z\G/K). Suppose ¢ €
LﬁuSp(Z\G)K is an eigenform with (¢, ¢) = 1. Since the ideal class group acts transitively

on the components of X, all geodesics of discriminant d have the same volume, that is,

vol(Z(Ap)Tq(F\T4(AF)) _ Lan(1, xa)
vol(Kg)hg ~ vol(Kg)hg

vol(yy) = L vol(Xy4) =
hg
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Let Hg be the group of ideal class characters of E. Via class field theory, we
may view x € Hyg as a character on the torus Ty (F)\Ty(AF) ~ E*\A% which in fact factors
through X,;. More precisely, x may be viewed as a locally constant function on X; such
that x(t) = x(a) for t € y,. Let ¢ € Hg such that y4 = y.. Then

1 -
La(t)= 5= 2 ')

xeHg

for t € X4, where 1,, denotes the characteristic function of y;. Note that

/(p(t)x(clt)dt‘:f w(t)x(t)dt‘.
Xa Xa

Hence

1 VO](Kd
_ (t)dt‘ - / (t)
vollg) /yj” Tanll, xa) XZ o PO
_vol(Ka) ‘
olt)
€ Tan(l, ) xt

Suppose ¢ occurs in the cuspidal representation 7. As before, we consider the translate
(zq)p. Since x is unramified, it is a newform satisfying the conditions in Section 4.1
with Q = x~!. Then Theorem 4.1 implies something good. Using the fact that x ~! is finite
order, one gets

2 _LO/2,me®x 7Y

vol(Kq)2/[d]

/ t)x(t)dt
Xa

Note that L(s, 7z ® x ') = L(s,7 ® w,-1), where 7,1 denotes the automorphic induction
of x! to GLy(Af). Furthermore, the conductor of 7,1 is just the conductor of x4. Hence

the subconvexity assumption gives

2
< |d|™?

f p(t)x(t)dt
Xa
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Putting everything together with Siegel’s lower bound for La,(1, x4), we have

1
vol(yq)

/ <p(t)dt‘ &« hg|d|<?
Ya

for any € > 0.

One may bound the integrals for ¢, an Eisenstein form similarly. |

Appendix

The results of this paper are obtained via a factorization of the distribution J,(f) into
a product of local distributions. In the case that 7 is not dihedral with respect to the
quadratic extension E/F (so that the base change of = to E remains cuspidal), such
a factorization was obtained in [15, Theorem 2]. In this appendix, we obtain the same
result for cuspidal representations = which are dihedral with respect to E; we refer to
[15, Section 8] for further details.

Let E = F(v/5) be a quadratic extension of number fields and 7 the associated
character of F*\Ay;. We denote by o the nontrivial element of Gal(E/F). Let H C GL(2, E)

be the unitary similitude group associated to the matrix

0 1
w = ,
1 O

with similitude character . Set Ky = H(Ar) N K, where K is the standard maximal com-
pact subgroup of GL(2, Ag).

We fix an additive character ¢ : F\Ar — C*. On the groups GL(2, Ag) and H(AF),
we take the product of the local measures defined in [15, Section 2]. To define a measure
on the compact group K,, where v is a place of E or F, we make use of the Iwasawa

decomposition
GL(Z, Ev) = T(EU)N(EU)K‘UI

where T denotes the diagonal torus in GL(2) and N the upper-triangular unipotent sub-
group. The measures dt on T(E,) and dn on N(E,) are defined via the obvious isomor-
phisms T(E,) = E x E and N(E,) = E,. Having defined a measure dg on GL(2, E,), the

measure dk on K, is taken to be such that

dg=dt dn dk.
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Similarly for a place v of F,

H(F,) = Ty(F,)Ng(F,)Kg,,

Ty(F,) = {(a bd‘1> tac€ES,be FUX]
Ny(F,) = {(1 Xf) 1X e FU}.

We use the isomorphism Ty(F,) = E x F to define a measure on Ty(F,) and take the

where

and

Haar measure |8|§de on Ng(F,). The measure dk on Ky, is chosen as before. With these

choices,

vol(K,, dk) = 0, L(2,15)7!,
for a place v of E, and for a place v of F,

vol (Kp,, dk) = 05'L(2, 1),

where DzE and D'/Pf are defined as in [16, Section 2.1].

We now fix a unitary character x : EX\A, — C* such that Xla; € {1F,n}. We as-
sume that x? is nontrivial, so that the induction of x to an automorphic representation
7 of GL(2, Ar) is cuspidal. As is well known, w, = nyx laz. We let IT denote the base change
of m to GL(2, Ag). Taking the character

7 <g Z) - x(a)x'(d)

of B(Ag), we realize IT on the space of smooth functions f: GL(2, Ag) — C such that

flbg) = x(b) flg)
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for all b € B(Ag). The action of I is given by
(M(g) N(x) = &**H9 flxg),

— 1
where €79 = |a,a,;"|z for

with k € K. The inner product on I1 is given by

(¢1,¢2)=/}3X\AJK¢1 ((a 1) k) ¢2<<“ 1) k) d*a dk

= ress—1 Ls, lg)/ ¢1(k)pa(k) dk.
K

We now fix a unitary character 2 : EX\A; — C* such that Q|,x = w,, which forces
Q # x. We assume, as we may, thats(1/2, xQ) = +1 and £(1/2, x "!Q) = +1, since otherwise
L(1/2,T1 ® @) = 0 and we know that the relevant period integrals vanish.

Let f e CX(GL(2, Ag)). We recall, for x, y € GL(2, E)Z(Ag)\ GL(2, Ag),

1 [ . —_—
Kenlx, p) = E/ ZE(X, I( e; it, E(y, ¢;it, 1) dt,
x4

where the sum is taken over an orthonormal basis {¢} of 1, and the Eisenstein series are

defined by the analytic continuation of

E(gl @; )\’l H) = Z (p(yg)e(k‘i’er(Vg)) .
y€B(E)\ GL(2,E)

For T, T > 0, we consider

a
On,n,n,(f) = / / AT AT Kenm (( ) h) Q Ya)d*aw.nk(h) dh,
\A% JH(F)Z(Ap\H(AF) ' 1

as in [15] and define

On(f) = lim lim Oz 5(f.

Ty —o00 Th—>00
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Following [15, Section 8] and taking care of the normalization of measures,

vol (F*\A})

On(f) = 1

Z w(IT( o) Pele).
@

Here the sum is over an orthonormal basis {¢} of II,
Pcle) =/ oK) x (k) dk
Ky
and w(¢) is defined to be the value at A = 0 of the analytic continuation of

wlp, 2) =f plwva)2~Ha,)ettrHwva) gxg)
E

with

a 0 1 1
a= , V= .
0 1 0 1
For a place v of F and ¢, € I1,, we define u,(¢,) and P,,(¢,) analogously, and for
f» € CX(GL(2, E,)),

On,(f) =Y o, (£)eu) Peol@y),

Pv

with the sum taken over an orthonormal basis of IT, with respect to the inner product
O1002) = [ 01,0002, dk.
K,

Clearly, the distribution ©n(f) factors and if we write f= f5[] s f, where S is
a finite set of places of F outside of which everything is unramified and f° denotes the

characteristic function of K5, then

1 LS(1/2,T® Q)LS(1,n)
4L(1,7) LS(1, 7, AA)LS(2, 1) HO“ (£o)

On(f) =

We shall now compare the distributions ®p, (f,) with the ones defined in terms

of Whittaker models, as is done for the cuspidal spectrum in [15, Section 4]. Having fixed
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the character y, we take the Whittaker model W(II, ¥g) for I1 to be given by the analytic

continuation to A = 0 of
W,(g,%) = / plwn(x)glelHwrRI y (3 dx,
Agp

where

(o )
n(x) = .
0 1

We note, for future reference, that by a simple change of variables,
a 1_
w, (( 1) m) =lalz, " x @ [ ¢ (wn(x)etHPHmy L (_ax) dx
Ag

foralla € A;.
For a place v of F, the inner product on W(I1,, ¥g,) is taken to be

(Wl,Wz)=/ WI(“ )Wz<“ )an.
Ex 1 1

For a place v of F and W, € W(I,, ¥g,),

/\U(WU):/ Wv<a O>Qul(a)dxa
X 0 1

v

and

mmm:/ m(b O)Xv(b)dxb.
Fx 0 1

We define a distribution for f € C¥(GL(2, E,)) by

ON (N = 1 (AW)P,(W,),
w,

with the sum taken over an orthonormal basis of W(I1,, ¥g,).
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We now compare ®1-V}’v(f) with @, (f). The following lemma can be taken from [16,

Proposition 1].

Lemma 1. For a place v of F and all ¢y, ¢, € I1,,

(@1, 02) = m(le,sz). .
Next we compare the distributions p and A.
Lemma 2. For a place v of F and ¢ € IT,,
plp) = e(1/2, (x )%, V)~ AW, 0

Proof. We have

W(p ((a 1) ,)») _ |a|éka_1(a)/];(p (wn(X)) e“*”'H('””(X)))wE(—aX) dx,

and hence
a O 1
A(W,A):/ w, (( )A)Q (@) d*a
x 0 1
=/ |a|é_k(xﬂ)7l(a)/ go(wn(X)) gt Hun@ Yy, (_gx) dx d*a.
x E

By the Tate functional equation, we have

MW, 2) = y(1/2 — &, (xsz)*l,%)/ a2 (xQa) ((1) 1) o Hun@) g
Ex a

=y(1/2—A,(xsz)—1,@/ Q(a)w( ° 1) Jrrrd( 2 D)) g
E* a

1

=y(1/2- 06" T5) [ oty (0 1> et ava

a 1

= y(1/2 = 2, (xR, V)lp, 1.

Finally, since Qx|r = ng/r, 80 ¥(1/2, ()71, ¥5) = e(1/2, (xQ)71, ¥z). n
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Finally, we compare P, and P.

Lemma 3. For a place v of F and ¢ € I1,,

L(1,1F)?

Proof. To begin with,

Pulg) = f o) ¢ (k) dk
Ky

L
T L(,1p)

/ w(wn(\/gx))em,mwn(ﬁx») dx
F

by applying [16, (4)] to H(F) = Z(E) GL(2, F). On the other hand, in the sense of analytic

continuation,

P(%)z[ Wq)(“ 1>X(a)an

= / ) /E la|re(wn(x)el?Heny (_q(x 4 %) dx d*a

— L1, 1) /F /E plwn(x)e* 0y (g (x + 2) dx da

— 14512L(1, 15) /F /F fF plwnlx + xv/8)e B 2y (_2ax) dx, dx, da
= |5|1%L(1,1F)/F/F/F<p(u)n(;q+xZ\/5))e<pr"’J”‘X1“‘2*/3’”Ip(—ole)azx1 dx, da

1
= |8|2L(1,15) / o(wn(xv/5))elrHuntevi) gy,
F

by the Fourier inversion formula. |

Combining the above lemmata we have, for any place v of F and f, € C2°(GL(2, E,)),

On,(fi) = e(1/2, (x ;1 ¥5) L1, 0)20% (£).
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This gives the following corollary.
Corollary 1. For f= f5[],.s fi € CL(GL(2,A)) as above,

s(1,L3(1/2, 1 ® Q)
LS(1, 7, Ad) ' O

1 L
on(f = []en (£

veS

The upshot of the relative trace formula comparison is an identity of the form

@n(f) + @n/(f) = 9(,8(_7‘;)

as in [15, p. 41], where ©p denotes the contribution to the trace formula from the char-
acter ¥ ~!. There is only one term on the right-hand side in this case, since 7 ® n = 7.
Thus for f= f5[],.s /i € CF(GL(2, Ag)),

s(1L,mL%(1/2, 1 ® Q)
LS(1,7, Ad)

1 L
ST1e8 ) = 0, (f).

veS

We can now apply the purely local arguments of [15, Section 5] and deduce the statement
of [15, Theorem 2] for = dihedral with respect to E.
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