
10 Rings

10.1 The ring axioms

Definition 10.1. Let R be a set with two binary operations, addition + : R×R→ R and multipli-
cation · : R×R→ R. We say R is a (commutative) ring (with 1) if for all a, b, c ∈ R,

(a) R is an abelian group under addition, i.e.,
(i) a+ (b+ c) = (a+ b) + c
(ii) a+ b = b+ a
(iii) there exists 0 ∈ R such that a+ 0 = a for all a ∈ R
(iv) for each a, there exists −a ∈ R such that a+ (−a) = 0

(b) the usual multipilication rules hold, i.e.,
(v) a(bc) = (ab)c
(vi) ab = ba
(vii) there exists 1 ∈ R such that 1 · a = a for all a ∈ R
(viii) 0 · a = 0
(ix) a(b+ c) = ab+ ac.

If we additionally have 0 6= 1 and, we can divide by any non-zero element, i.e.,
(x) for each a 6= 0 ∈ R, there exists a−1 such that aa−1 = 1,

then we say R is a field.

Note that if all the properties and (a) and (b) hold except for (vi)1, we say R is a noncommutative
ring. We will primarily be interested in commutative rings for the rest of the semester, though non-
commutative rings are also common and useful in number theory: examples includeM2(Z), M2(Q),
M2(R), M2(C), where M2(R) denotes the set of 2 × 2 matrices with coefficients in R, Hamilton’s
quaternions H, and the Hurwitz integers from Chapter 8.

Another remark on terminology: not all authors require rings to contain 1. We however, will
always mean a commutative ring with 1 by the term ring.

10.2 Rings and fields

Rings and fields should be properly treated in a course on algebra, so we will not go through all the
formalities of checking all the axioms hold for our examples. What is important, is to get a feel for
what sort of things are rings and fields. The basic idea is that a ring is a “number system” like Z,
where one can add, subtract and multiply, and all the usual laws hold. A field is a “number system”
like Q, where one can add, subtract, multiply and divide, and all the usual laws hold. The definition
we gave says that a field is a ring where every non-zero element is invertible. In particular, any field
is a ring. Now let’s look at some comcrete examples.

Example. Z, Q, R and C are all rings. All but Z are fields (only ±1 are invertible in Z).

Example. Z/nZ is a ring. If n is prime, it is also a field. (Z/nZ is a field if and only if n is
prime).

1Technically, one should also modify (vii), (viii), (ix) so they are true from the left and right, e.g., 1 ·a = a becomes
1 · a = a · 1 = a
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Example. N is not a ring. Nor is N ∪ {0}. The first does not contain 0, and the second does not
contain negatives, i.e., they are not closed under subtraction.

Example. S = {z ∈ C : |z| ≤ 1} is not a ring. It contains 0, 1, all its negatives and is closed under
multiplication, but it is not closed under addition: e.g., 1 + 1 6∈ S.

Example. Z[
√
n] is a ring for any n ∈ Z. (If n is a square, then Z[

√
n] = Z. So is Z[ζ3]. These

are not fields.

Exercise 10.1. Why are Z/4Z and Z/6Z not fields? What about Z[i]?

Example. Let n ∈ Z and Q(
√
n) = {a+ b

√
n : a, b ∈ Q}. (Again Q(

√
n) = Q if n is a square.)

Then Q(
√
n) is a field.

From the Z[
√
n] and Q(

√
n) examples, we see we may form new rings and fields, by adding

elements to old one—this is called adjoining elements.

Definition 10.2. Let R,F ⊆ C where R is a ring and F is a field. Let α ∈ C. Then R[α] is defined
to be the smallest ring in C containing both R and α. Similarly F (α) is defined to be the smallest
field in C containing both F and α.

Note: we can sequentially adjoin more than element to a ring or field. We denote this simply by
putting more than one element in the brackets or parentheses. For example if R = Z[

√
2], we can

consider R′ = R[
√

3]. It is cumbersome to write R′ = Z[
√

2][
√

3], so we just write R′ = Z[
√

2,
√

3].

Example. Z[
√
−3, −1+

√
−3

2 ] = Z[−1+
√
−3

2 ] = Z[ζ3]. We encountered this in Chapter 7, since Z[
√
−3]

did not have unique factorization, we adjoined ζ3 = −1+
√

3
2 . But we can write this new ring simply

as Z[ζ3], as opposed to Z[
√
−3, −1+

√
−3

2 ], since
√
−3 = 2ζ3 + 1 ∈ Z[ζ3].

Example. Z[
√

2,
√

3] =
{
a+ b

√
2 + c

√
3 + d

√
6 : a, b, c, d ∈ Z

}
. To see why, observe that

√
2
√

3 =√
6 must be in the ring. Since Z[

√
2,
√

3] is closed under multiplication and addition, we must have
every element of the form a+ b

√
2+ c
√

3+d
√

6 for a, b, c, d is in the ring, i.e., any ring containg Z,√
2 and

√
3 must contain the set on the right. Hence it suffices to show the set on the right is a ring.

This will follow (see below) if we know it is closed under addition, subtraction and multipliation.
Clearly adding or subtracting two elements of this form gives another element of this form, so it is
closed under addition and subtraction. It is closed under multiplication since

(a+ b
√

2 + c
√

3 + d
√

6)(e+ f
√

2 + g
√

3 + h
√

6) =

(ae+2bf+3cg+6hd)+(af+be+3ch+3dg)
√

2+(ag+ce+2bh+2df)
√

3+(ah+de+bg+cf)
√

6.

Similarly one can check Q(
√

2,
√

3) =
{
a+ b

√
2 + c

√
3 + d

√
6 : a, b, c, d ∈ Q

}
.

Here we used the following basic fact.

Definition 10.3. Let R ⊂ R′. If R and R′ are rings (with respect to the same operations), we say
R is a subring of R′. If R and R′ are fields (with respect to the same operations), we say R is a
subfield of R′.
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Lemma 10.4. Let R′ be a ring and R ⊆ R′ be non-empty. Then R is a subring of R′ if and only if
R is closed under addition, subtraction and multiplication. Similarly if R′ is a field, R is a subfield
of R′ if and only if R is closed under addition, subtraction, multiplication and division by non-zero
elements.

The proof is like our proof of the corresponding test for subgroups in Chapter 3, which was
similar to the corresponding test for subspaces you probably saw in Linear Algebra.

Exercise 10.2. In the same way we determined Z[
√

2,
√

3] =
{
a+ b

√
2 + c

√
3 + d

√
6 : a, b, c, d ∈ Z

}
,

determine what the rings Z[
√
−2, i] and Z[ 3

√
2] are, in terms of Z-linear combinations of algebraic

numbers. Similarly determine what Q(
√
−2, i) and Q( 3

√
2) are in terms of Q-linear combinations of

algebraic numbers. Prove at least one of your four answers, like we did in the example above. For
the other three, you may just state the answer.

Now that we have some examples under our belt, let’s define some basic concepts we’ve been
working with this semester in the case of specific examples, along with some other fundamental
terms.

Definition 10.5. Let R be a ring. We say u ∈ R is a unit if u is invertible in R. We say α ∈ R is
irreducible if any factorization α = βγ in R implies β or γ is a unit. If α = βγ we say β divides
(or is a divisor of) α and write β|α. If α = uβ where u is a unit, we say α and β are associates,
and write α ∼ β.

Suppose α ∈ R satisfies the prime divisor property, i.e., α|βγ implies α|β or α|γ. Then we say
α is prime in R if α is not a unit.

An equivalent definition of α being irreducible is that the only divisors of α are the units and
the associates of α.

We will not use the notion of prime elements often for rings that do not have unique factorization,
but it may be worthwhile to make a couple of comments. For any ring R, one can check every prime
π of R is irreducible. Further, if R satisfies the prime divisor property (which is equivalent to unique
factorization into irreducibles, up to units) an element π ∈ R is prime if and only if it is a non-unit
irreducible. In fact R has unique factorization if and only if every non-unit irreducible is prime.

Example. Let n ∈ N. Then u is a unit of Z[
√
n] if and only if N(u) = ±1. However, the norm

map on Z[
√
−n] is never negative, so u is a unit Z[

√
−n] if and only if N(u) = 1. We’ve seen the

proofs in Chapters 6 and 7, so this matches with our earlier definition of unit.
In the case of Z[

√
n] and n squarefree, the units are going to be ±εm where ε is a fundamental

unit of Z[
√
n], i.e., x+ y

√
n where x, y is a smallest positive solution to x2−ny2 = ±1 and m ∈ Z.

There may or may not be a non-trivial solution to x2 − ny2 = −1—if there is, such a solution will
correspond to the fundamental unit ε—if not, ε will be the fundamental +-unit from Chapter 5. It
is an interesting question to know when is the fundamental +-unit the fundamental unit, i.e., when
x2 − ny2 = −1 has a non-trivial solution, but we will not pursue this this semester. Instead, we
will focus the imaginary quadratic rings like Z[

√
−n] and Z[ζ3], which have more structure (making

them simpler to work with) and are in many ways more interesting.

Exercise 10.3. Let R be a ring, and U be the subset of units. Show that U is a group under
multiplication. What are the units of R = Z/nZ? What about R = Z[

√
−n] for n ∈ N?
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Exercise 10.4. Let R be a ring. Let u be a unit of R. Show u′ is also a unit of R if and only if
u′ ∼ u.

Example. Let F be a field. Then every non-zero element is invertible, i.e., every non-zero element
is a unit. Consequently, every non-zero element of F is irreducible, since any factorization must be
into units. There are no primes.

Hence none of the notions in Defintion 10.5 are interesting in the case of fields. Similarly, the
question of unique factorization is moot. For example, if F = Q then we have factorizations like
2 = 2

3 · 3, but all 3 of these numbers are units, so this is considered a trivial factorization in F .
This suggests the following. If R does not have unique factorization, e.g., R = Z[

√
−3], then

maybe we want to try adjoining elements to regain unique factorizations. If we adjoin inverses
for each non-zero element of R, we will get the field F = Q(

√
−3), which trivially has unique

factorization (in a very unhelpful way). So if we add enough things to R, we can recover unique
factorization, but we don’t want to add so much that we get a field, which will make the unique
factorization useless. Knowing what is the right amount to add, which in our example is ζ3 =
−1+

√
−3

2 , is a very delicate question, and it may not always be possible. In any case, the first step
to knowing what to add is learning about algebraic integers in the next section.

10.3 Algebraic integers

Definition 10.6. Let α ∈ C. We say α is an algebraic number of degree m > 0 if

αm + cm−1α
m−1 + · · ·+ c1α+ c0 = 0

for some c0, c1, . . . , cm ∈ Q with m > 0 minimal. If each ci ∈ Z, we say α is an algebraic integer.
The polynomial p(x) = xm + cm−1x

m−1 + · · ·+ c1x+ c0 is called the minimum polynomial of α.

In other words, α is an algebraic number if it is a root of a monic polynomial with coefficients in
Q, and it is an algebraic integer if it is a root of a monic polynomial with coefficients in Z. (Recall
a monic polynomial is one whose leading coefficient is 1.)

Exercise 10.5. Show the definition of algebraic number and algebraic integer given in class coincide
with that in the text. Namely show that (i) α is an an algebraic number of degree m if and only if

amα
mam−1α

m−1 + · · ·+ a1α+ a0 = 0

for some ai ∈ Z with m minimal; and (ii) α is an algebraic integer if and only if we may take
am = 1.

In other words, the algebraic numbers are just roots of polynomials over Z, and the algebraic
integers are the roots of monic polynomials over Z. These may seem like strange conditions, but
the next example suggests our definition is reasonable.

Example. m = 1. The algebraic numbers of degree 1 are the solutions to

α+ c = 0 ⇐⇒ α = −c

for c ∈ Q, i.e., they are precisely the rational numbers. The algebraic integers of degree 1 are those
α = −c with c ∈ Z, i.e., just Z. Thus the notion of algebraic numbers and algebraic integers are
some sort higher degree generalization of Q and Z.
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Example. m = 2. The algebraic numbers of degree 2 are the non-rational solutions to

α2 + bα+ c = 0 ⇐⇒ α =
−b±

√
b2 − 4c

2

where b, c ∈ Q. The algebraic integers of degree 2 are just the numbers of the same form but with
b, c ∈ Z. Note if b = c = 1, we get α = ζ3, so ζ3 is an algebraic integer.

Example. An n-th root of any a ∈ Z is an algebraic integer. It satisfies p(x) = xn−a = 0. Caution:
the roots of p(x) are not necessarily of degree n. For instance p(x) = x4 − 1 = (x2 − 1)(x2 + 1) has
roots ±1,±i, the 4-th roots of unity. Clearly ±1 are of degree 1 and ±i are of degree 2. However,
the 4-th roots of 2, i.e., the roots of p(x) = x4 − 2 namely ± 4

√
2,±i 4

√
2 are all of degree 4. The

difference is that 1 is both a square and a 4-th power, but 2 is neither.

Note that unlike the degree 1 case, the algebraic integers (numbers) of degree ≤ 2 do not form
a ring (field). For instance

√
2 and

√
3 are algebraic integers of degree 2, but

√
2 +
√

3 is not. It
will be algebraic of degree 4 however. In fact, one has the following.

Proposition 10.7. The algebraic integers form a subring of C. The algebraic numbers form a
subfield of C.

The proof is somewhat technical and not so enlightening, so we omit the proof. In any case,
we will never work with all algebraic integers or algebraic numbers at the same time. The point
is, these sets are too large to be useful, particularly from the point of view of unique factorization.
(Another hint that they might not be a good thing to work with is that there is no standard
notation for them.) For instance, how does 2 factor into the ring of all algebraic integers? It clearly
factors as (

√
2)2, which further factors as ( 4

√
2)4. We can repeat this process indefinitely, so there

is no minimal factorization. (Also none of these factors are units, because their reciprocals are not
algebraic integers, so there are infinitely many “non-trivial” factorizations of 2.) Instead, one works
with more manageable-sized subrings of the algebraic integers, such as Z[i],Z[ζ3] or Z[

√
2,
√

3].

The importance of the distinction between algebraic integers and algebraic non-integers is per-
haps still not clear. To understand this, we will first need some analogues of notions familiar from
linear algebra.

Definition 10.8. Let R be a subring of C. We say {αi} is a Z-basis for R if each αi ∈ R and
every x ∈ R can be written uniquely in the form x = c1αi1 + c2αi2 + · · · cmαim where ci ∈ Z. Every
Z-basis for R has the same number of elements; this number is called the degree of R (over Z),
and denoted [R : Z].

Note that any non-zero subring R of C contains Z: it contains 1, and therefore 2 = 1 + 1,
3 = 1 + 1 + 1, and so on, as well as their negatives. Technically, the zero ring R = {0} is also a
subring of C, and it has the empty set as its Z-basis, i.e., it is degree 0 over Z. We will not prove
the fact that every Z-basis of R has the same number of elements—but the idea is the same as for
vector spaces over fields. If you want to see a proof, look up some basic module theory (a module is
like a vector space, but defined over a ring instead of a field).

Proposition 10.9. Let α ∈ C be algebraic. Then [Z[α] : Z] < ∞ if and only if α is an algebraic
integer. Further, if α is an algebraic integer of degree m, then [Z[α] : Z] = m and

{
1, α, · · · , , αm−1

}
is a Z-basis of Z[α].
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Proof. (⇐) Suppose α is an algebraic integer of degree m, so it satisfies

αm = cm−1α
m−1 + · · ·+ c1α+ c0

for some ci ∈ Z.
We claim

{
1, α, . . . , αm−1

}
is a basis for Z[α]. Since Z[α] is closed under multiplication, all the

powers of α must be contained in Z[α], i.e., each αi ∈ Z[α]. We want to show that

Z[α] =
{
a0 + a1α+ · · ·+ am−1α

m−1|ai ∈ Z
}
.

It is clear the right hand side is contained in the left, so it suffices to show the right hand side is a
subring of C. It is clearly closed under addition and subtraction. When one multiplies two elements
of the form on the right, one gets a Z-linear combination of 1, α, · · ·α2m−2, but we can rewrite each
αj for j ≤ m in terms of smaller powers of α from the relation above. We can keep doing this this
until our product is expressible entirely as a Z-linear combination of 1, α, . . . , αm−1, showing the
right hand set is closed under multiplication, hence the smallest ring containing Z and α.

This almost proves the claim, but we didn’t show that
{
1, α, . . . , αm−1

}
is a Z-basis, because

we didn’t check that it is Z-linearly independent, i.e., that a0 + a1α+ · · ·+ am−1α
m−1 = 0 has only

the trivial solution. (This implies the uniqueness criterion in the definition of Z-basis just like in
the vector space case.) But this is true because no αi is a Z-linear combination of smaller powers
of α if i < m (otherwise α would have smaller degree).

(⇒) For clarity, we sketch the idea with a specific example—the general case follows in the
same way. Suppose α = 1√

2
. Then it satisfies the integer polynomial 2x2 − 1 = 0 or the monic

polynomial x2− 1
2 = 0, so this is an algebraic non-integer. Again Z[α] must contain all powers of α,

namely 1√
2
, 1

2 ,
1

2
√

2
, . . . , 1

2m ,
1

2m
√

2
, . . .. One can check that these form a Z-basis for Z[α]. Since the

denominators are increasing, none of these powers of α can be written as a Z-linear combination
of the smaller powers. For example, 1

2 6= a + b√
2
, 1

2
√

2
6= a + b√

2
+ c

2 for any a, b, c ∈ Z. Hence
no finite subset of these powers can form a Z-basis for Z[α]. Therefore Z[α] does not have a finite
Z-basis.

Note one can use the above proposition to prove the previous one. See Stewart and Tall’s
Algebraic Number Theory.

10.4 Quadratic fields and their integers

Let F be a subfield of C. As with (non-zero) subrings of C, since it contains 1 it must contain Z;
therefore it must contain Q. Just like C is a 2-dimensional vector space over R, we may view F as
a vector space over Q—one can add any two vectors, and one can scale any vector by a rational
number. This just addition and multiplication in F . For example Q(

√
2) =

{
a+ b

√
2 : a, b ∈ Q

}
is

a 2-dimensional vector space over Q with basis
{
1,
√

2
}
.

Definition 10.10. Let F be a subfield of C. The degree of F over Q, denoted by [F : Q], is the
dimension of F over Q as a vector space. If [F : Q] is finite, we say F is a number field. We say
F is a quadratic field if [F : Q] = 2.

Number fields, and their corresponding rings of integers (see below), are the fundamental objects
of study in algebraic number theory. It is not to hard to see that every number field consists
entirely of algebraic numbers. We will start off by investigating the simplest case (apart from Q),
the quadratic fields.
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Proposition 10.11. If F is a quadratic field, then F = Q(
√
d) for some d ∈ Z (non-square). In

fact, we may take d to be squarefree, i.e., d is not divisible by any square.

We will not need this, so we will omit the proof, but it is good to know. It should also be
reassuring, since the text defines a quadratic field to be one of the form Q(

√
d). The reason we

may take d to be squarefree is because if d = n2d′, Q(
√
n2d′) = Q(

√
d′), so we may factor out any

squares dividing d. In general, the characterization of higher degree fields (cubic, quartic, etc), is
not so simple. You should be sure of the converse however.

Exercise 10.6. Let d ∈ Z be a non-square. Show that F = Q(
√
d) has degree 2 over Q.

Definition 10.12. Let F be a number field. Its ring of integers, denoted by OF , is defined to be
the set of algebraic integers which lie in F .

Note that OF is indeed a ring since it is the intersection of two subrings of C: F and the ring
of all algebraic integers. While we omitted the proof of the fact that all algebraic integers form a
ring, it is easy to check that OF is a ring for F quadratic from the determination of OF below.

Now one needs to be careful of terminology with a more general notion of integer floating around.
We typically refer to OF as the integers of F , or just integers if it is clear what field we are working
in. Then to distinguish the usual integers Z from the integers OF , we call elements of Z rational
integers. Indeed, they are the integer ring of Q, i.e., OQ = Z.

Exercise 10.7. Check that OQ = Z.

Proposition 10.13. Let d ∈ Z be squarefree, F = Q(
√
d) and OF be its ring of integers. Then

OF =

{
Z[1+

√
d

2 ] d ≡ 1 mod 4,
Z[
√
d] d ≡ 2, 3 mod 4.

Note d squarefree implies d 6≡ 0 mod 4.

Proof. (⊇) It is easy to see that OF always Z[
√
d], since

√
d is an algebraic integer: it is a root of

x2 − d. Further, to see when the element α = 1+
√

d
2 ∈ OF , observe

N(α) = αα =
1 +
√
d

2
1−
√
d

2
= α(1− α),

i.e., the minimum polynomial for α is p(x) = x2 − x + N(α), which has integer coefficients since
N(α) = 1−d

4 . precisely when d ≡ 1 mod 4. In other words 1+
√

d
2 ∈ OF if and only if d ≡ 1 mod 4.

This shows OF is at least as big is as claimed—we still have to show nothing else is contained
in OF .

(⊆) Suppose α ∈ Q(
√
d) is an integer. It is easy to see that α must be of degree 2 (e.g.,

quadratic formula or exercise below). We saw earlier this means α is of the form α = −b′±
√

b′2−4c′

2 .
for b′, c′ ∈ Z. In particular, any α ∈ F must be of the form α = a+b

√
d

2 for some a, b ∈ Z (and
b 6= 0). We want to find the minimum polynomial p(x) for α in terms of a and b.

Write p(x) = x2 +mx+ n. This means

p(α) =
a2 + db2 + 2ma+ 4n+ 2(a+m)b

√
d

4
= 0.
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Looking at the
√
d coefficient (which is called the irrational part if d > 0 and the complex part if

d < 0), we see m = −a. Then the rational part (called the real part if d < 0) is db2−a2

4 + n = 0.
Hence n = −db2−a2

4 ∈ Z if and only if db2 ≡ a2 mod 4.
If d 6≡ 1 mod 4, the only possibility is that a, b are both even, i.e., α ∈ Z[

√
d]. This proves the

d ≡ 2, 3 mod 4 cases.
If d ≡ 1 mod 4, the above means a ≡ b mod 4, i.e., α = a−b

2 + b1+
√

d
2 . Note a−b

2 ∈ Z when
a ≡ b mod 4, so in fact α ∈ Z[1+

√
d

2 ].

Example. Let F = Q(
√
−3). Then OF is not Z[

√
−3] but Z[1+

√
−3

2 ]. Since 1+
√
−3

2 = 1 + ζ3, we
see OF = Z[1+

√
−3

2 ] = Z[ζ3].
This provides some motivation for why we tried looking at Z[ζ3] after realizing unique factoriza-

tion fails in Z[
√
−3]. The ring Z[

√
−3] does not contain all algebraic integers of the form x+y

√
−3

for x, y ∈ Q, but Z[ζ3] does.

Exercise 10.8. Let d be squarefree, and α = a + b
√
d where a, b ∈ Q, i.e., α ∈ Q(

√
d). As usual

α = a − b
√
d, and the norm is N(α) = αα. Define the trace of α to be tr(α) = α + α. Suppose

α 6∈ Q. Show the minimum polynomial for α is p(x) = x2 − tr(α)x+N(α).
This formula may remind you of the formula characterisic polynomial for a 2 × 2 non-scalar

matrix, where one replaces norm by determinant.
In particular this means every α ∈ Q(

√
d) is in fact an algebraic number of degree 2. Moreover,

it means the integers of Q(
√
d) are precisely the elements whose trace and norm is an integer. This

is a more intuitive way of looking at what it means to be an algebraic integer of degree 2.

Exercise 10.9. Check the trace (as defined above) is a group homomorphism from (Q(
√
d),+) to

(Q,+). In other words check (i) tr(α) ∈ Q for α ∈ Q(
√
d), and (ii) tr(α + β) = tr(α) + tr(β) for

α, β ∈ Q(
√
d).

Let’s summarize some basic ideas of algebraic number theory now with a couple of examples
that illustrate the main issues arising.

1. Goal of number theory: study integer solutions to polynomial equations, e.g., what numbers
are of the form n = x2 + 3y2 or n = x2 + 5y2.

2. Main principle of algebraic number theory: work in a larger ring/field than Z/Q so that your
polynomial equation factors; e.g., if we work in Z[

√
−3]/Q(

√
−3)) and Z[

√
−5]/Q(

√
−5), we

can factor x2 + 3y2 = (x+ y
√
−3)(x− y

√
−3) and x2 + 5y2 = (x+ y

√
5)(x− y

√
5).

3. Main difficulty: to make use of the factorizations x2 + 3y2 = (x + y
√
−3)(x − y

√
−3) and

x2 + 5y2 = (x+ y
√

5)(x− y
√

5), we want to use unique factorization into primes/irreducibles
(or equivalently, the prime divisor property), but neither Z[

√
−3] nor Z[

√
−5] have unique

factorization.

4. First idea: maybe one can add more elements of Q(
√
−3) to recover unique factorization in

Z[
√
−3]; indeed, OQ(

√
−3) = Z[ζ3] has unique factorization. The big problem with this idea is

that it only works in a few cases.
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5. Second idea: The above does not work for Z[
√
−5], since Z[

√
−5] = OQ(

√
−5) does not have

unique factorization. Perhaps we can recover unique factorization in Z[
√
−5] by working with

the algebraic integers of a larger field than Q(
√
−5). Indeed, every element of Z[

√
−5] has

a unique factorization into elements of Z[
√
−5, i] = OQ(

√
−5,i). There are a two main issues

with this idea: (i) how does one find the appropriate larger field to work in? (ii) the ring of
integers of this larger field may be considerably more complicated than the ring we wanted to
work in.

6. Third idea: Look at the problem from a different perspective. Historically we have learned
through experimentation that the simplest way to study factorization questions in a ring is
through Dedekind’s theory of ideals. We will revisit the second idea later in the year, which
can be useful, but we will spend the rest of the semester considering Dedekind’s ideal theory.

10.5 Norms and units of quadratic fields

We’ve already covered pretty much everything in here, but I recommend you read over it to review
the ideas. Also, there’s a solution to one of the exercises in there.

10.6 Discussion

Probably worth reading.
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