HW 8

April 8, 2016

Problem 1. Show that

$$
\begin{equation*}
\sec ^{2} x-\tan ^{2} x=1 \tag{1}
\end{equation*}
$$

You may use the fact that $\sin ^{2} x+\cos ^{2} x=1$.
Problem 2. Calculate

$$
\begin{equation*}
\int \sec ^{6} x \mathrm{~d} x \tag{2}
\end{equation*}
$$

Please refer to the lecture notes for other values of $\int \sec ^{n} x \mathrm{~d} x$.
Problem 3. Show that

$$
\begin{equation*}
\sin ^{2} x=\frac{1-\cos 2 x}{2} \tag{3}
\end{equation*}
$$

You may use the fact that

$$
\begin{equation*}
\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta \tag{5}
\end{equation*}
$$

Problem 4. Calculate

$$
\begin{equation*}
\int \sec x \tan ^{2} x \mathrm{~d} x \tag{6}
\end{equation*}
$$

You may use the integral of any functions we have discussed in class. Please refer to the lecture notes for the record.
Problem 5. Calculate

$$
\begin{equation*}
\int \sin ^{4} x \mathrm{~d} x \tag{7}
\end{equation*}
$$

Problem 6. Calculate

$$
\begin{equation*}
\int \sin ^{2} x \cos ^{2} x \mathrm{~d} x \tag{8}
\end{equation*}
$$

Problem 7. Calculate

$$
\begin{equation*}
\int \frac{\sqrt{1-x^{2}}}{x^{2}} \mathrm{~d} x \tag{9}
\end{equation*}
$$

Using trigonometric substitution.
The homework is now closed. It is due April 11th.

