Irreducible Representations of $Sp(\mathbb{C}^{2\ell},\Omega)$ on $\bigwedge \mathbb{C}^{2\ell}$

John D. Griffis

Department of Mathematics University of Texas at Arlington Arlington, TX USA

March, 2016

John D. Griffis

Irreducible Representations of $Sp(\mathbb{C}^{2\ell}, \Omega)$ on $\bigwedge \mathbb{C}^{2\ell}$

We fix $G \subset GL_{\mathbb{C}}(N)$ to be a reductive linear algebraic group.

Definition

- By [G] we denote the set of equivalence classes of irreducible representations of G.
- On the other hand, \widehat{G} will denote the subset of [G] of equivalence classes of finite-dimensional irreducible representations of G.
- The corresponding sets of equivalence classes of representations of an associative algebra \mathcal{A} will be denoted by $[\mathcal{A}]$ or $\widehat{\mathcal{A}}$.

Remark

We write $\rho^{\lambda} : G \to \operatorname{End}(F^{\lambda})$ for a representative of the class λ , for each $\lambda \in [G]$ and denote this representative by $(\rho^{\lambda}, F^{\lambda})$.

Definition

By $\mathcal{A}(G)$ (or, by $\mathbb{C}[G]$) we denote the group algebra associated with the group G.

Remark

Every G-module is considered as an $\mathcal{A}(G)$ -module and vice-versa.

Example

Fix $\{e_i\}$ to be a basis of $V = \mathbb{C}^{2\ell}$.

Then define $\{\varphi^i\}$ to be a basis of V^* such that $\Omega(e_i, \varphi^j) = \delta_{ij}$, where Ω is a non-degenerate skew-symmetric bilinear form.

Definition

On $\bigwedge V$, define the exterior product $\varepsilon : \wedge^k \mathbb{C}^{2\ell} \to \wedge^{k+1} \mathbb{C}^{2\ell}$ and the interior product $\iota : \wedge^k \mathbb{C}^{2\ell} \to \wedge^{k-1} \mathbb{C}^{2\ell}$.

Remark

Then we have the following relations:

$$\begin{split} & \{\varepsilon(x), \varepsilon(y)\} = 0, \\ & \{\iota(x^*), \iota(y^*)\} = 0, \\ & \{\varepsilon(x), \iota(x^*)\} = \Omega(x^*, x) Id_{\wedge^k \mathbb{C}^{2\ell}}. \end{split}$$

Definition

Let $E = \sum_{i=1}^{2\ell} \varepsilon(e_i) \iota(\varphi^i)$ denote the skew-symmetric Euler operator on $\bigwedge V$.

Remark

For $u \in \wedge^k V$, Eu = ku.

Definition

Let
$$Y = \varepsilon(\frac{1}{2}Id)$$
, $X = -Y^*$, and $H = \ell Id - E$.

Remark

$$[E, X] = -2X, [E, Y] = 2Y, [Y, X] = E - \ell Id$$

Irreducible Representations of $Sp(\mathbb{C}^{2\ell}, \Omega)$ on $\bigwedge \mathbb{C}^{2\ell}$

Recall that for any vector space V, End(V) is an associative algebra with unity I_V , the identity map on V.

Definition

For any subset $U \subset \text{End}(V)$, let $\text{Comm}(U) := \{T \in \text{End}(V) | TS = ST \text{ for any } S \in U\}$ denote the *commutant* of U.

Remark

The set Comm(U) forms an associative algebra with unity I_V .

Theorem

 $On \wedge \mathbb{C}^{2\ell}$,

$$\operatorname{Comm}(\operatorname{Sp}(\mathbb{C}^{2\ell})) = \operatorname{Span}_{\mathbb{C}}\{X, H, Y\} \cong \mathfrak{sl}_{\mathbb{C}}(2)$$

Definition

A *k*-vector $u \in \wedge^k \mathbb{C}^{2\ell}$ is called Ω -harmonic when Xu = 0. The *k*-homogeneous space of Ω -harmonic elements is denoted by $\mathcal{H}(\wedge^k \mathbb{C}^{2\ell}) = \{u \in \wedge^k \mathbb{C}^{2\ell} | Xu = 0\}.$ The space of Ω -harmonic is denoted by $\mathcal{H}(\bigwedge \mathbb{C}^{2\ell}, \Omega)$.

Definition

- Let \mathcal{R} be a subalgebra of $\operatorname{End}(W)$ such that
 - $\textbf{0} \ \mathcal{R} \text{ acts irreducibly on } W.$
 - ② If $g \in G$ and $T \in \mathcal{R}$, then $(g, T) \mapsto \rho(g)T\rho(g^{-1}) \in \mathcal{R}$ defines an action of G on \mathcal{R} .
- Then we denote by

$$\mathcal{R}^{\mathcal{G}} = \{ T \in \mathcal{R} | \rho(g) T = T \rho(g) \text{ for all } g \in \mathcal{G} \}$$

the commutant of $\rho(G)$ in \mathcal{R} .

Remark

Since elements of \mathcal{R}^{G} commute with elements from $\mathcal{A}(G)$, we may define a $\mathcal{R}^{G} \otimes \mathcal{A}(G)$ -module structure on W. Alternatively, we may consider W as a $(\mathcal{R}^{G}, \mathcal{A}(G))$ -bimodule.

Definition

Let
$$E^{\lambda} = \operatorname{Hom}_{\mathcal{G}}(F^{\lambda}, W)$$
 for $\lambda \in \widehat{\mathcal{G}}$.

Remark

Then E^{λ} is an \mathcal{R}^{G} -module satisfying

$$Tu(\pi^{\lambda}(g)v) = T\rho(g)u(v) = \rho(g)(Tu(v)),$$

where $u \in E^{\lambda}$, $v \in F^{\lambda}$, $T \in \mathcal{R}^{G}$, and $g \in G$.

Theorem

As an $\mathcal{R}^{G} \otimes \mathcal{A}(G)$ -bimodule, the space W decomposes as

$$W \cong \bigoplus_{\lambda \in \widehat{G}} E^{\lambda} \boxtimes F^{\lambda}.$$
(1)

In the above theorem $E \boxtimes F$ stands for the outer (external) tensor product of the \mathcal{R}^{G} -module E and of the $\mathcal{A}(G)$ -module F.

Let $F^{(\ell-k)}$ denote the irreducible representation of $\mathfrak{sl}_{\mathbb{C}}(2)$ with dimension $\ell - k + 1$.

Theorem

Then, there exists a canonical decomposition of $\bigwedge \mathbb{C}^{2\ell}$ as a $(\mathfrak{sl}_{\mathbb{C}}(2), Sp(\mathbb{C}^{2\ell}))$ -bimodule,

$$\bigwedge \mathbb{C}^{2\ell} \cong \bigoplus_{k=0}^{\ell} \mathcal{F}^{(\ell-k)} \boxtimes \mathcal{H}(\wedge^k \mathbb{C}^{2\ell}, \Omega).$$

Theorem (Duality)

Each multiplicity space E^{λ} is an irreducible \mathcal{R}^{G} -module. Further, if $\lambda, \mu \in \widehat{G}$ and $E^{\lambda} \cong E^{\mu}$ as an \mathcal{R}^{G} -module, then $\lambda = \mu$.

Theorem (Duality Correspondence)

Let σ be the representation of \mathcal{R}^G on W and let \widehat{G} denote the set of equivalence classes of the irreducible representation $\{E^{\lambda}\}$ of the algebra \mathcal{R}^G occurring in W. Then the following hold:

- The representation (σ, W) is a dirrect sum of irreducible *R^G*-modules, and each irreducible submodule *E^λ* occurs with finite mulitplicity, dim(*F^λ*).
- The map $F^{\lambda} \rightarrow E^{\lambda}$ is a bijection.

Corollary (Duality)

• As a G-module,

$$\bigwedge V \cong \bigoplus_{\lambda \in \widehat{G}} \mathcal{F}^{(\lambda)} \otimes \operatorname{Hom}_{\mathcal{G}} \left(\mathcal{F}^{(\lambda)}, \bigwedge V \right).$$

- F^(λ) ⊗ Hom_G (F^(λ), ∧ V) is an irreducible End_G (∧ V)-module.
- $(\rho, \bigwedge V)$ is the direct sum of irreducible $\operatorname{End}_G(\bigwedge V)$ -module

Corollary

$$\bigwedge^k \mathbb{C}^{2\ell} = igoplus_{i=0}^{[k/2]} \mathit{Id}^i \wedge \mathcal{H} \left(igwedge^{k-2i} \mathbb{C}^{2\ell}, \Omega
ight)$$

• The space $\mathcal{H}(\bigwedge^{j} \mathbb{C}^{2\ell}, \Omega)$ has dimension $\binom{2\ell}{j} - \binom{2\ell}{j-2}$, for $j = 1, \dots, \ell$.

▲□ → ▲ 国 → ▲ 国 →

Thank you.

Irreducible Representations of $Sp(\mathbb{C}^{2\ell},\Omega)$ on $\underline{\wedge} \mathbb{C}^{2\ell}$

John D. Griffis

<ロ> <同> <同> < 同> < 同>