Irreducible Representations of $\operatorname{Sp}\left(\mathbb{C}^{2 \ell}, \Omega\right)$ on $\wedge \mathbb{C}^{2 l}$

John D. Griffis
Department of Mathematics
University of Texas at Arlington
Arlington, TX USA

March, 2016

We fix $G \subset G L_{\mathbb{C}}(N)$ to be a reductive linear algebraic group.

Definition

- By [G] we denote the set of equivalence classes of irreducible representations of G.
- On the other hand, \widehat{G} will denote the subset of $[G]$ of equivalence classes of finite-dimensional irreducible representations of G.
- The corresponding sets of equivalence classes of representations of an associative algebra \mathcal{A} will be denoted by $[\mathcal{A}]$ or $\widehat{\mathcal{A}}$.

Remark

We write $\rho^{\lambda}: G \rightarrow \operatorname{End}\left(F^{\lambda}\right)$
for a representative of the class λ, for each $\lambda \in[G]$ and denote this representative by $\left(\rho^{\lambda}, F^{\lambda}\right)$.

Definition

By $\mathcal{A}(G)$ (or, by $\mathbb{C}[G]$) we denote the group algebra associated with the group G.

Remark

Every G-module is considered as an $\mathcal{A}(G)$-module and vice-versa.

Example

Fix $\left\{e_{i}\right\}$ to be a basis of $V=\mathbb{C}^{2 \ell}$.
Then define $\left\{\varphi^{i}\right\}$ to be a basis of V^{*} such that $\Omega\left(e_{i}, \varphi^{j}\right)=\delta_{i j}$, where Ω is a non-degenerate skew-symmetric bilinear form.

Definition

On $\wedge V$, define the exterior product $\varepsilon: \wedge^{k} \mathbb{C}^{2 \ell} \rightarrow \wedge^{k+1} \mathbb{C}^{2 \ell}$ and the interior product $\iota: \wedge^{k} \mathbb{C}^{2 \ell} \rightarrow \wedge^{k-1} \mathbb{C}^{2 \ell}$.

Remark

Then we have the following relations:

$$
\begin{aligned}
\{\varepsilon(x), \varepsilon(y)\} & =0 \\
\left\{\iota\left(x^{*}\right), \iota\left(y^{*}\right)\right\} & =0 \\
\left\{\varepsilon(x), \iota\left(x^{*}\right)\right\} & =\Omega\left(x^{*}, x\right) / d_{\wedge^{*} \mathbb{C}^{2}} .
\end{aligned}
$$

Example Continued

Definition

Let $E=\sum_{i=1}^{2 \ell} \varepsilon\left(e_{i}\right) \iota\left(\varphi^{i}\right)$ denote the skew-symmetric Euler operator on ΛV.

Remark

For $u \in \wedge^{k} V, E u=k u$.

Definition

Let $Y=\varepsilon\left(\frac{1}{2} l d\right), X=-Y^{*}$, and $H=\ell l d-E$.
Remark

$$
[E, X]=-2 X,[E, Y]=2 Y,[Y, X]=E-\ell l d
$$

Recall that for any vector space V, $\operatorname{End}(V)$ is an associative algebra with unity I_{V}, the identity map on V.

Definition

For any subset $U \subset \operatorname{End}(V)$,
let $\operatorname{Comm}(U):=\{T \in \operatorname{End}(V) \mid T S=S T$ for any $S \in U\}$ denote the commutant of U.

Remark

The set Comm (U) forms an associative algebra with unity I_{V}.

Example Continued

Theorem

$O n \wedge \mathbb{C}^{2 \ell}$,

$$
\operatorname{Comm}\left(S p\left(\mathbb{C}^{2 \ell}\right)\right)=\operatorname{Span}_{\mathbb{C}}\{X, H, Y\} \cong \mathfrak{s l}_{\mathbb{C}}(2)
$$

Definition

A k-vector $u \in \wedge^{k} \mathbb{C}^{2 \ell}$ is called Ω-harmonic when $X u=0$.
The k-homogeneous space of Ω-harmonic elements is denoted by $\mathcal{H}\left(\wedge^{k} \mathbb{C}^{2 \ell}\right)=\left\{u \in \wedge^{k} \mathbb{C}^{2 \ell} \mid X u=0\right\}$.
The space of Ω-harmonic is denoted by $\mathcal{H}\left(\bigwedge \mathbb{C}^{2 \ell}, \Omega\right)$.

Definition

- Let \mathcal{R} be a subalgebra of $\operatorname{End}(W)$ such that
(1) \mathcal{R} acts irreducibly on W.
(2) If $g \in G$ and $T \in \mathcal{R}$, then $(g, T) \mapsto \rho(g) T \rho\left(g^{-1}\right) \in \mathcal{R}$ defines an action of G on \mathcal{R}.
- Then we denote by

$$
\mathcal{R}^{G}=\{T \in \mathcal{R} \mid \rho(g) T=T \rho(g) \text { for all } g \in G\}
$$

the commutant of $\rho(G)$ in \mathcal{R}.

Remark

Since elements of \mathcal{R}^{G} commute with elements from $\mathcal{A}(G)$, we may define a $\mathcal{R}^{G} \otimes \mathcal{A}(G)$-module structure on W. Alternatively, we may consider W as a $\left(\mathcal{R}^{G}, \mathcal{A}(G)\right)$-bimodule.

Definition

Let $E^{\lambda}=\operatorname{Hom}_{G}\left(F^{\lambda}, W\right)$ for $\lambda \in \widehat{G}$.

Remark

Then E^{λ} is an \mathcal{R}^{G}-module satisfying

$$
T u\left(\pi^{\lambda}(g) v\right)=T \rho(g) u(v)=\rho(g)(T u(v))
$$

where $u \in E^{\lambda}, v \in F^{\lambda}, T \in \mathcal{R}^{G}$, and $g \in G$.

Theorem

As an $\mathcal{R}^{G} \otimes \mathcal{A}(G)$-bimodule, the space W decomposes as

$$
\begin{equation*}
W \cong \bigoplus_{\lambda \in \widehat{G}} E^{\lambda} \boxtimes F^{\lambda} . \tag{1}
\end{equation*}
$$

In the above theorem $E \boxtimes F$ stands for the outer (external) tensor product of the \mathcal{R}^{G}-module E and of the $\mathcal{A}(G)$-module F.

Example Continued

Let $F^{(\ell-k)}$ denote the irreducible representation of $\mathfrak{s l}_{\mathbb{C}}(2)$ with dimension $\ell-k+1$.

Theorem

Then, there exists a canonical decomposition of $\bigwedge \mathbb{C}^{2 \ell}$ as a $\left(\mathfrak{s l}_{\mathbb{C}}(2), S p\left(\mathbb{C}^{2 \ell}\right)\right)$-bimodule,

$$
\bigwedge \mathbb{C}^{2 \ell} \cong \bigoplus_{k=0}^{\ell} F^{(\ell-k)} \boxtimes \mathcal{H}\left(\wedge^{k} \mathbb{C}^{2 \ell}, \Omega\right)
$$

Theorem (Duality)

Each multiplicity space E^{λ} is an irreducible \mathcal{R}^{G}-module. Further, if $\lambda, \mu \in \widehat{G}$ and $E^{\lambda} \cong E^{\mu}$ as an \mathcal{R}^{G}-module, then $\lambda=\mu$.

Theorem (Duality Correspondence)

Let σ be the representation of \mathcal{R}^{G} on W and let \widehat{G} denote the set of equivalence classes of the irreducible representation $\left\{E^{\lambda}\right\}$ of the algebra \mathcal{R}^{G} occurring in W. Then the following hold:

- The representation (σ, W) is a dirrect sum of irreducible \mathcal{R}^{G}-modules, and each irreducible submodule E^{λ} occurs with finite mulitplicity, $\operatorname{dim}\left(F^{\lambda}\right)$.
- The map $F^{\lambda} \rightarrow E^{\lambda}$ is a bijection.

Example Continued

Corollary (Duality)

- As a G-module,

$$
\bigwedge V \cong \bigoplus_{\lambda \in \widehat{G}} F^{(\lambda)} \otimes \operatorname{Hom}_{G}\left(F^{(\lambda)}, \bigwedge V\right)
$$

- $F^{(\lambda)} \otimes \operatorname{Hom}_{G}\left(F^{(\lambda)}, \bigwedge V\right)$ is an irreducible End $_{G}(\bigwedge V)$-module.
- $(\rho, \bigwedge V)$ is the direct sum of irreducible $\operatorname{End}_{G}(\bigwedge V)$-module

Example Continued

Corollary

$$
\bigwedge^{k} \mathbb{C}^{2 \ell}=\bigoplus_{i=0}^{[k / 2]} I d^{i} \wedge \mathcal{H}\left(\bigwedge^{k-2 i} \mathbb{C}^{2 \ell}, \Omega\right)
$$

- The space $\mathcal{H}\left(\bigwedge^{j} \mathbb{C}^{2 \ell}, \Omega\right)$ has dimension $\binom{2 \ell}{j}-\binom{2 \ell}{j-2}$, for $j=1, \ldots, \ell$.

Thank you.

