Solutions to problems on Assignment 7

9. We will prove the converse of the desired statement. That is, we assume there exists N € Z such that
for every sequence z, in D(P,r)\{P} with lim 2,, = P, there exists n € N such that |(z, — P)" f(2,)] < N;
and we will show that f cannot have an essential singularity at P.

From our assumption it follows that there exists some 7o € (0,r) such that for every z € D(P,r9)\{P},
|(z — P)Nf(z)] < N. For if this were not true, then for every n € N, there would exist z = z, €
D(P,1/n)\{P} such that |(z, — P)N f(2,)] > N. Then {z,} is a sequence such that limz, = P and
there is no n € N such that |(z, — P)Y f(2,)| < N, violating our assumption.

Now define g(z) = (¢ — P)V f(2). From the preceding paragraph we know that g(z) is bounded on
D(P,ro)\{P}, so g has a removable singularity at P. Therefore g(z) has a power series expansion
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n=0

on D(P,rg)\{P}. Hence
oo
F(2) = g(2) /(2= PYY =3 ay(z — PN
n=0
on D(P,79)\{P}. But this implies that f has a pole of order N at P, not an essential singularity at P.

23. Since f has a pole of order k at P, then f has the Laurent expansion

f(2)= ) an(z=P)"

n=—k

for all z in some punctured neighborhood D(P,r)\{P}. Then g(z) = (z — P)* f(2) has the expansion

9(z) = Z an(z — P n+k Zan k(z—P

in D(P,r)\{P}. So the coeflicient of (z— P)™ in the Taylor series expansion for g is the same as the coefficient
of (z — P)"~% in the Laurent series expansion for f.

34(a). We are integrating f over the circle C' = {|z| = 5} with (presumably) the positive orientation.
The poles of f are at z = —1 and z = —2i, both of which are within C. The residue of f at z = —1 is

-1 1424 —2i 4 — 2
e z Z, and the residue of f at z = —2¢ is —; _i 1= ' So by the residue theorem,
1+2z 4—2i
=1.
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34(d). The poles of f are at 0, —1, and —2, all of which are within . We have

Resy(0) = ¢*/((1)(2)) = 1/2
Resy(— ) = /(-1)(1)) = —1/e
Resy(—2) = ¢7%/((-=2)(-1)) = 1/(2¢?)

Since v has the negative orientation, then the desired integral is equal to the negative of the sum of the
residues, and is therefore equal to —(e? — 2e + 1)/(2¢2).
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sin z
34(i). We have f(z) =
cos z
zeroes of cos z, which as we saw in class are all on the real line and are the same as the zeroes of the real
cosine function, namely {((2k+1)7)/2 : k € Z}. All these poles are simple (because sin z is non-zero at each
pole and the derivative of cos z is non-zero at each pole) and the residues are

, and sinz and cos z are entire, so the only singularities of f are at the

=1.

([ @k+ 1)\ sin((2k + 1)7/2)
Resf( 2 ) ~ sin((2k + 1)7/2)

From the diagram of v we see that the only poles of f about which « has non-zero index are —37/2 and
37/2, and Ind,(—37/2) = —1 and Ind,(37/2) = 1. Therefore
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— [ tanz dz = Resy (y) Ind,(—37/2) 4+ Resy (327r> Ind,(37/2) = -14+1=0.
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