
3. Maximum likelihood estimators and efficiency

3.1. Maximum likelihood estimators. Let X1, . . . , Xn be a random
sample, drawn from a distribution Pθ that depends on an unknown
parameter θ. We are looking for a general method to produce a statistic
T = T (X1, . . . , Xn) that (we hope) will be a reasonable estimator for
θ.

One possible answer is the maximum likelihood method. Suppose I
observed the values x1, . . . , xn. Before the experiment, the probability
that exactly these values would occur was Pθ(X1 = x1, . . . , Xn = xn),
and this will depend on θ. Since I did observe these values, maybe it’s
a good idea to look for a θ that maximizes this probability (which, to
impress the uninitiated, we now call likelihood).

Please do not confuse this maximization with the futile attempt to
find the θ that is now most likely, given what I just observed. I really
maximize over the condition: given that θ has some concrete value, we
can work out the probability that what I observed occurred, and this
is what I maximize.

Exercise 3.1. Please elaborate. Can you also make it plausible that
there are (artificial) examples where the MLE is in fact quite likely to
produce an estimate that is hopelessly off target?

Definition 3.1. We call a statistic θ̂ = θ̂(X1, . . . , Xn) a maximum
likelihood estimator for θ if Pθ(X1 = x1, . . . , Xn = xn) is maximal at

θ = θ̂(x1, . . . , xn).

There is, in general, no guarantee that this maximum exists or (if it
does) is unique, but we’ll ignore this potential problem and just hope
for the best. Also, observe that if we take the definition apart very
carefully, we discover a certain amount of juggling around with argu-

ments of functions: the MLE θ̂ is a statistic, that is, a random variable
that is a function of the random sample, but the maximizing value of
the parameter is obtained by replacing the Xj by their observed values
xj. Alternatively, we could say that we consider the likelihood func-
tion L(x1, . . . , xn) = P (X1 = x1, . . . , Xn = xn), then plug the random
variables Xj into their own likelihood function and finally maximize,
which then produces a maximizer that is a random variable itself (and
in fact a statistic). None of this matters a whole lot right now; we’ll
encounter this curious procedure (plug random variables into functions
obtained from their own distribution) again in the next section.

Example 3.1. Let’s return to the coin flip example: P (X1 = 1) = θ,
P (X1 = 0) = 1 − θ, and here it’s convenient to combine this into one
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formula by writing P (X1 = x) = θx(1− θ)1−x, for x = 0, 1. Thus

P (X1 = x1, . . . , Xn = xn) = θ
∑
xj(1− θ)n−

∑
xj .

We are looking for the θ that maximizes this expression. Take the θ
derivative and set this equal to zero. Also, let’s abbreviate S =

∑
xj.

SθS−1(1− θ)n−S − (n− S)θS(1− θ)n−S−1 = 0

or S(1− θ)− (n− S)θ = 0, and this has the solution θ̂ = S/n. (We’d
now have to check that this is indeed a maximum, but we skip this
part.)

So the MLE for this distribution is given by θ̂ = T = X. It is reassur-
ing that this obvious choice now receives some theoretical justification.

We know that this estimator is unbiased. In general, however, MLEs
can be biased. To see this, let’s return to another example that was
discussed earlier.

Example 3.2. Consider again the urn with an unknown number N = θ
of balls in it, labeled 1, . . . , N . We form a random sample X1, . . . , Xn

by drawing n times, with replacement, according to the distribution
P (X1 = x) = (1/N)χ1,...,N(x). For fixed x1, . . . , xn ≥ 1, the probability
of observing this outcome is then given by

(3.1) P (X1 = x1, . . . , Xn = xn) =

{
N−n maxxj ≤ N

0 max xj > N
.

We want to find the MLE, so we are trying to maximize this over N , for
fixed x1, . . . , xn. Clearly, entering the second line of (3.1) is no good, so
we must take N ≥ maxxj. For any such N , the quantity we’re trying
to maximize equals N−n, so we get the largest possible value by taking
the smallest N that is still allowed. In other words, the MLE is given

by N̂ = maxXj.
We know that this estimator is not unbiased. Again, it is nice to see

some theoretical justification emerging for an estimator that looked
reasonable.

Example 3.3. Recall that the Poisson distribution with parameter θ >
0 is given by

P (X = x) =
θx

x!
e−θ, (x = 0, 1, 2, . . .).

Let’s try to find the MLE for θ. A random sample drawn from this
distribution has the likelihood function

P (X1 = x1, . . . , Xn = xn) =
θx1+...+xn

x1! · · ·xn!
e−nθ.
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We want to maximize this with respect to θ, so we can ignore the
denominator, which does not depend on θ. Let’s again write S =

∑
xj;

we then want to maximize θSe−nθ. This leads to

SθS−1e−nθ − nθSe−nθ = 0

or θ̂ = S/n, that is θ̂ = X.

Exercise 3.2. Show that EX = θ if X is Poisson distributed with
parameter θ. Conclude that the MLE is unbiased.

For random samples drawn from continuous distributions, the above
recipe cannot literally be applied because P (X1 = x1, . . . , Xn = xn) =
0 always in this situation. However, we can modify it as follows: call a

statistic θ̂ a MLE for θ if θ̂(x1, . . . , xn) maximizes the (joint) density

fX1,...,Xn(x1, . . . , xn; θ) = f(x1; θ)f(x2; θ) · · · f(xn; θ),

for all possible values xj of the random sample. In analogy to our
terminology in the discrete case, we will again refer to this product of
the densities as the likelihood function.

Example 3.4. Consider the exponential distribution with parameter θ;
this is the distribution with density

(3.2) f(x) =
e−x/θ

θ
(x ≥ 0),

and f(x) = 0 for x < 0. Let’s first find EX for an exponentially
distributed random variable X:

EX =
1

θ

∫ ∞
0

xe−x/θ dx = −xe−x/θ
∣∣∣∞
0

+

∫ ∞
0

e−x/θ dx = θ,

by an integration by parts in the first step. (So it is natural to use θ
as the parameter, rather than 1/θ.)

To find the MLE for θ, we have to maximize θ−ne−S/θ (writing, as
usual, S =

∑
xj). This gives

−nθ−n−1e−S/θ +
S

θ2
θ−ne−S/θ = 0

or θ̂ = S/n, that is, as a statistic, θ̂ = X (again...). This MLE is
unbiased.

What would have happened if he had used η = 1/θ in (3.2) instead,
to avoid the reciprocals? So f(x) = ηe−ηx for x ≥ 0, and I now want to
find the MLE η̂ for η. In other words, I want to maximize ηne−ηS, and
proceeding as above, we find that this happens at η̂ = n/S or η̂ = 1/X.

Now recall that η = 1/θ, and the MLE for θ was θ̂ = X. This is
no coincidence; essentially, we solved the same maximization problem
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twice, with slightly changed notation the second time. In general, we
have the following (almost tautological) statement:

Theorem 3.2. Consider parameters η, θ that parametrize the same
distribution. Suppose that they are related by η = g(θ), for a bijective

g. Then, if θ̂ is a MLE for θ, then η̂ = g(θ̂) is a MLE for η.

Exercise 3.3. Give a somewhat more explicit version of the argument
suggested above.

Notice, however, that the MLE estimator is no longer unbiased after
the transformation. This could be checked rather quickly by an indirect
argument, but it is also possible to work things out explicitly.

To get this started, let’s first look at the distribution of the sum S2 =
X1 + X2 two independent exponentially distributed random variables
X1, X2. We know that the density of S2 is the convolution of the density
from (3.2) with itself:

f2(x) =
1

θ2

∫ x

0

e−t/θe−(x−t)/θ dt =
1

θ2
xe−x/θ

Next, if we add one more independent random variable with this dis-
tribution, that is, if we consider S3 = S2 + X3, then the density of S3

can be obtained as the convolution of f2 with the density f from (3.2),
so

f3(x) =
1

θ3

∫ x

0

te−t/θe(t−x)/θ dt =
1

2θ3
x2e−x/θ.

Continuing in this style, we find that

fn(x) =
1

(n− 1)!θn
xn−1e−x/θ.

Exercise 3.4. Denote the density of S = Sn by fn. Show that then S/n
has density f(x) = nfn(nx).

Since X = S/n, the Exercise in particular says that X has density

(3.3) f(x) =
n

(n− 1)!θn
(nx)n−1e−nx/θ (x ≥ 0).

This is already quite interesting, but let’s keep going. We were orig-
inally interested in Y = 1/X, the MLE for η = 1/θ. We apply the
usual technique to transform the densities:

P (Y ≤ y) = P (X ≥ 1/y) =

∫ ∞
1/y

f(x) dx,
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and since g = fY can be obtained as the y derivative of this, we see
that

(3.4) g(y) =
1

y2
f(1/y) =

n

(n− 1)!θn
y−2(n/y)n−1e−n/(θy) (y > 0).

This gives

EY =

∫
yg(y) dy =

n

(n− 1)!θn

∫ ∞
0

y−1
(
n

y

)n−1
e−n/(θy) dy

=
n

(n− 1)!θ

∫ ∞
0

tn−2e−t dt.

We have used the substitution t = n/(θy) to pass to the second line.
The integral can be evaluated by repeated integration by parts, or,
somewhat more elegantly, you recognize it as Γ(n− 1) = (n− 2)!. So,
putting things together, it follows that

E(1/X) =
n

(n− 1)θ
=

n

n− 1
η.

In particular, Y = 1/X is not an unbiased estimator for η; we are off
by the factor n/(n−1) > 1 (which, however, is very close to 1 for large
n).

Exercise 3.5. Check one more time that X is an unbiased estimator for
θ, this time by making use of the density f from (3.3) to compute EX
(in an admittedly rather clumsy way). You can again use the fact that
Γ(k) = (k − 1)! for k = 1, 2, . . ..

Example 3.5. Consider the uniform distribution on [0, θ]:

f(x) =

{
1/θ 0 ≤ x ≤ θ

0 otherwise

We would like to find the MLE for θ. We then need to maximize with
respect to θ (for given x1, . . . , xn ≥ 0) the likelihood function

f(x1) · · · f(xn) =

{
θ−n maxxj ≤ θ

0 max xj > θ
.

This first of all forces us to take θ ≥ maxxj, to enter the first line,

and then θ as small as (still) possible, to maximize θ−n. Thus θ̂ =
max(X1, . . . , Xn). This estimator is not unbiased.

Exercise 3.6. Why?

This whole example is an exact (continuous) analog of its discrete
version Example 3.2.
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Example 3.6. Finally, let’s take a look at the normal distribution. Let’s
first find the MLE for θ = σ2, for a normal distribution with known µ.
We then need to maximize

θ−n/2e−A/θ, A =
∑ (xj − µ)2

2
.

This gives −(n/2)/θ + A/θ2 = 0 or θ = 2A/n, that is,

(3.5) θ̂ =
1

n

n∑
j=1

(Xj − µ)2.

Exercise 3.7. (a) Show that nθ̂/σ2 ∼ χ2(n).

(b) Conclude that θ̂ is unbiased.

By Theorem 3.2, the MLE for σ is then given by

σ̂ =

√
1

n

∑
(Xj − µ)2.

This estimator is not unbiased.
What if µ and σ are both unknown? There is an obvious way to adapt

our procedure: we can maximize over both parameters simultaneously
to obtain two statistics that can serve as MLE style estimators. So we
now want to maximize

θ−n/2 exp

(
− 1

2θ

n∑
j=1

(xj − µ)2

)
over both µ and θ. We set the partial derivatives equal to zero and
obtain the two conditions

− n

2θ
+

1

2θ2

n∑
j=1

(xj − µ)2 = 0,
n∑
j=1

(xj − µ) = 0.

The second equation says that µ = (1/n)
∑
xj =: x, and then, by

repeating the calculation from above, we see from this and the first
equation that θ = (1/n)

∑
(xj − x)2. In other words,

µ̂ = X, θ̂ =
1

n

n∑
j=1

(Xj −X)2 =
n− 1

n
S2.

So µ̂ is unbiased, but θ̂ is not since ES2 = σ2 = θ, so Eθ̂ = ((n−1)/n)θ.

Exercise 3.8. Find the MLE for θ for the following densities: (a) f(x) =
θxθ−1 for 0 < x < 1, and f(x) = 0 otherwise, and θ > 0;
(b) f(x) = eθ−x for x ≥ θ and f(x) = 0 otherwise
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Exercise 3.9. Here’s an example where the maximization does not pro-
duce a unique value. Consider the density f(x) = (1/2)e−|x−θ|. Assume
for convenience that n = 2k is even and consider data x1 < x2 < . . . <
xn. Then show that any θ̂ in the interval xk < θ̂ < xk+1 maximizes the
likelihood function.

Exercise 3.10. (a) Show that

f(x, θ) =
1

θ2
xe−x/θ (x ≥ 0)

(and f(x) = 0 for x < 0) is a density for θ > 0.

(b) Find the MLE θ̂ for θ.

(c) Show that θ̂ is unbiased.

3.2. Cramer-Rao bounds. If an estimator is unbiased, it delivers the
correct value at least on average. It would then be nice if this estimator
showed only little variation about this correct value (of course, if T is
biased, it is less clear if little variation about the incorrect value is a
good thing).

Let’s take another look at our favorite example from this point of
view. So P (X1 = 1) = θ, P (X1 = 0) = 1− θ, and we are going to use

the MLE T = θ̂ = X. Since the Xj are independent, the variances add
up and thus

Var(T ) =
1

n2
nVar(X1) =

θ(1− θ)
n

and σT =
√
θ(1− θ)/n ≤ 1/(2

√
n). This doesn’t look too bad. In

particular, for large random samples, it gets small; it decays at the
rate σT ∼ 1/

√
n.

Could we perhaps do better than this with a different unbiased es-
timator? It turns out that this is not the case. The statistic T = X is
optimal in this example in the sense that it has the smallest possible
variance among all unbiased estimators. We now derive such a result
in a general setting.

Let f(x, θ) be a density that depends on the parameter θ. We will
assume throughout this section that f is sufficiently well behaved so
that the following manipulations are justified, without actually making
explicit a precise version of such assumptions. We will certainly need
f to be twice differentiable with respect to θ since we will take this
second derivative, but this on its own is not sufficient to justify some
of the other steps (such as differentiating under the integral sign).

We have
∫∞
−∞ f dx = 1, so by taking the θ derivative (and interchang-

ing differentiation and integral), we obtain
∫
∂f/∂θ dx = 0. This we
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may rewrite as

(3.6)

∫ ∞
−∞

f(x, θ)
∂

∂θ
ln f(x, θ) dx = 0.

There are potential problems here with regions where f = 0; to avoid
these, I will simply interpret (3.6) as an integral over only those parts
of the real line where f > 0. (To make sure that the argument leading
to (3.6) is still justified in this setting, we should really make the ad-
ditional assumption that {x : f(x, θ) > 0} does not depend on θ, but
we’ll ignore purely technical points of this kind.)

An alternative reading of (3.6) is E(∂/∂θ) ln f(X, θ) = 0. Here (and
below) I use the general fact that Eg(X) =

∫
g(x)f(x) dx for any

function g.
Also note the somewhat curious construction here: we plug the ran-

dom variable X into its own density (and then take the logarithm) to
produce the new random variable ln f(X) (which also depends on θ).
If we take one more derivative, then (3.6) becomes
(3.7)∫ ∞
−∞

f(x, θ)
∂2

∂θ2
ln f(x, θ) dx+

∫ ∞
−∞

f(x, θ)

(
∂

∂θ
ln f(x, θ)

)2

dx = 0.

Definition 3.3. The Fisher information is defined as

I(θ) = E

(
∂

∂θ
ln f(X, θ)

)2

.

This assumes that X is a continuous random variable; in the discrete
case, we replace f by P (X = x, θ) (and again plug X into its own
distribution). From (3.7), we obtain the alternative formula

(3.8) I(θ) = −E ∂2

∂θ2
ln f(X, θ);

moreover, it is also true that

(3.9) I(θ) = Var((∂/∂θ) ln f(X, θ)).

Example 3.7. Let’s return one more time to the coin flip example:
P (X = x) = θx(1− θ)1−x (x = 0, 1), so lnP = x ln θ+ (1− x) ln(1− θ)
and

(3.10)
∂

∂θ
lnP =

x

θ
− 1− x

1− θ
.



MLE and efficiency 31

To find the Fisher information, we plug X into this function and take
the square. This produces

X2

θ2
+

(1−X)2

(1− θ)2
− 2

X(1−X)

θ(1− θ)
=

X2

(
1

θ2
+

1

(1− θ)2
+

2

θ(1− θ)

)
−2X

(
1

(1− θ)2
+

1

θ(1− θ)

)
+

1

(1− θ)2
.

Now recall that EX = EX2 = θ, and take the expectation. We find
that

I(θ) =
θ(1− θ)2 + θ3 + 2θ2(1− θ)− 2θ3 − 2θ2(1− θ) + θ2

θ2(1− θ)2

=
1

θ(1− θ)
.

Alternatively, we could have obtained the same result more quickly
from (3.8). Take one more derivative in (3.10), plugX into the resulting
function and take the expectation:

I(θ) = −E
(
−X
θ2
− 1−X

(1− θ)2

)
=

1

θ
+

1

1− θ
=

1

θ(1− θ)

Example 3.8. Consider the N(θ, 1) distribution. Its density is given by

f = (2π)−1/2e−(x−θ)
2/2, so ln f = −(x−θ)2/2+C. Two differentiations

produce (∂2/∂θ2) ln f = −1, so I = 1.

When dealing with a random sample X1, . . . , Xn, Definition 3.3 can
be adapted by replacing f by what we called the likelihood function in
the previous section. More precisely, we could replace (3.9) with

Var

(
∂

∂θ
lnL(X1, . . . , Xn; θ)

)
,

where L(x1, . . . , xn) = f(x1) · · · f(xn) (continuous case) or L(x1, . . . , xn) =
P (X1 = x1, . . . , Xn = xn) (discrete case). Then, however, we can use
the product structure of L and independence to evaluate (in the con-
tinuous case, say)

Var

(
n∑
j=1

∂

∂θ
ln f(Xj, θ)

)
=

n∑
j=1

Var

(
∂

∂θ
ln f(Xj, θ)

)
= nI(θ),

where now I is the Fisher information of an individual random variable
X. An analogous calculation works in the discrete case.
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Theorem 3.4 (Cramer-Rao). Let T = T (X1, . . . , Xn) be a statistic and
write k(θ) = ET . Then, under suitable (smoothness) assumptions,

Var(T ) ≥ (k′(θ))2

nI(θ)
.

Corollary 3.5. If the statistic T in Theorem 3.4 is unbiased, then

Var(T ) ≥ 1

nI(θ)
.

As an illustration, let’s again look at the coin flip example with its

MLE T = θ̂ = X. We saw earlier that Var(T ) = θ(1 − θ)/n, and
this equals 1/(nI) by our calculation from Example 3.7. Since T is
also unbiased, this means that this estimator achieves the Cramer-Rao
bound from Corollary 3.5. We give a special name to estimators that
are optimal, in this sense:

Definition 3.6. Let T be an unbiased estimator for θ. We call T
efficient if T achieves the CR bound:

Var(T ) =
1

nI(θ)

So we can summarize by saying that X is an efficient estimator for
θ.

Let’s now try to derive the CR bound. I’ll do this for continuous
random variables, with density f(x, θ). Then

k(θ) =

∫
dx1

∫
dx2 . . .

∫
dxnT (x1, . . . , xn)f(x1, θ) · · · f(xn, θ)

and thus (at least if we are allowed to freely interchange differentiations
and integrals)

k′(θ) =
n∑
j=1

∫
dx1

∫
dx2 . . .

∫
dxnT (x1, . . . , xn)×

f(x1, θ) · · ·
∂f(xj, θ)

∂θ
· · · f(xn, θ)

=

∫
dx1

∫
dx2 . . .

∫
dxnT (x1, . . . , xn)×(

n∑
j=1

∂

∂θ
ln f(xj, θ)

)
f(x1, θ) · · · f(xn, θ)

= ETZ,
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where we have abbreviated Z =
∑

(∂/∂θ) ln f(Xj, θ). We know that
EZ = 0 (compare (3.6)) and Var(Z) = nI, by independence of the Xj.
We will now need the following tool (which has many other uses):

Exercise 3.11. Establish the Cauchy-Schwarz inequality: For any two
random variables X, Y ,

|EXY | ≤
(
EX2

)1/2 (
EY 2

)1/2
.

Suggestion: Consider the parabola f(t) = E(X + tY )2 ≥ 0 and find its
minimum.

Exercise 3.12. Can you also show that we have equality in the CSI
precisely if X = cY or Y = cX for some c ∈ R?

Exercise 3.13. Define the correlation coefficient of two random vari-
ables X, Y as

ρX,Y =
E(X − EX)(Y − EY )

σXσY
.

Deduce from the CSI that −1 ≤ ρ ≤ 1. Also, show that ρ = 0 if
X, Y are independent. (The converse of this statement is not true, in
general.)

Since EZ = 0, we can write

k′(θ) = ETZ = E(T − ET )Z = E(T − ET )(Z − EZ),

and now the CSI shows that

k′2 ≤ Var(T )Var(Z) = nI(θ)Var(T ),

as claimed. �

Exercise 3.14. Observe that the inequality was only introduced in the
very last step. Thus, by Exercise 3.12, we have equality in the CR
bound precisely if T − ET and Z are multiples of one another. In
particular, this must hold for the efficient statistic T = X from the
coin flip example. Confirm directly that indeed X − θ = cZ.

Example 3.9. We saw in Example 3.4 that the MLE for the exponential

distribution f(x) = e−x/θ/θ (x ≥ 0) is given by T = θ̂ = X and that T
is unbiased. Is T also efficient? To answer this, we compute the Fisher
information: ln f = − ln θ − x/θ, so −∂2 ln f/∂θ2 = −1/θ2 + 2X/θ3,
and, taking expectations, we see that I = 1/θ2. On the other hand,
Var(T ) = (1/n)Var(X1) and

EX2
1 =

1

θ

∫ ∞
0

x2e−x/θ dx = θ2
∫ ∞
0

t2e−t dt = 2θ2,
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by two integrations by parts. This implies that Var(X1) = EX2
1 −

(EX1)
2 = θ2, and thus Var(T ) = θ2/n = 1/(nI), and T is indeed

efficient.

Let’s now take another look at the uniform distribution from Exam-
ple 3.5. Its density equals

f(x, θ) =

{
1/θ 0 < x < θ

0 otherwise
;

recall that the MLE is given by θ̂ = max(X1, . . . , Xn). We know that

T = θ̂ is not unbiased. Let’s try to be more precise here. Since P (T ≤
t) = (t/θ)n, the statistic T has density f(t) = ntn−1/θn (0 < t < θ). It
follows that

ET =
n

θn

∫ θ

0

tn dt =
n

n+ 1
θ.

Exercise 3.15. Show by a similar calculation that ET 2 = (n/(n+2))θ2.

In particular, if we introduce

U =
n+ 1

n
T =

n+ 1

n
max(X1, . . . , Xn),

then this new statistic is unbiased (though it is no longer the MLE for
θ). By the exercise,

EU2 =

(
n+ 1

n

)2

ET 2 =
(n+ 1)2

n(n+ 2)
θ2,

so

(3.11) Var(U) = EU2 − (EU)2 =

(
(n+ 1)2

n(n+ 2)
− 1

)
θ2 =

θ2

n(n+ 2)
.

This looks great: In our previous examples, the variance decayed only
at the rate ∼ 1/n, and here we now have Var(U) . 1/n2. Come to
think of it, is this consistent with the CR bound? Doesn’t Corollary 3.5
say that Var(T ) & 1/n for any unbiased statistic T? The answer to this
is that the whole theory doesn’t apply here. The density f(x, θ) is not
continuous (let alone differentiable) as a function of θ; it jumps at θ =
x. In fact, the problems can be pinpointed more precisely: (3.6) fails,
the integrand equals −1/θ2, and (3.6) was used to deduce that EZ = 0,
so the whole argument breaks down. Recall that by our discussion
following (3.6), the integration in (3.6) is really only extended over
0 < x < θ, so problems with the jump of f are temporarily avoided.
(However, I also remarked parenthetically that I would like the set
{x : f(x, θ) > 0} to be independent of θ, and this clearly fails here.)
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Let’s compare U with another unbiased estimator. Let V = 2X.
Since EX = EX1 = θ/2, this is indeed unbiased. It is a continuous
analog of the unbiased estimator that we suggested (not very seriously,
though) in the urn example from Chapter 2; see pg. 10. We have
Var(X) = Var(X1)/n and

EX2
1 =

1

θ

∫ θ

0

t2 dt =
θ2

3
,

so Var(X1) = θ2(1/3− 1/4) = θ2/12, thus

Var(V ) =
θ2

3n
.

This is markedly inferior to (3.11). We right away had a bad feeling
about V (in Chapter 2); this now receives precise theoretical confirma-
tion.

Exercise 3.16. However, if n = 1, then Var(V ) = Var(U). Can you
explain this?

Exercise 3.17. Consider the density

f(x, θ) =

{
2x/θ2 0 ≤ x ≤ θ

0 otherwise
.

(a) Find the MLE θ̂.

(b) Show that T = 2n+1
2n

θ̂ is unbiased.
(c) Find Var(T ).

Suggestion: Proceed as in the discussion above.

Example 3.10. Let’s return to the MLE T = θ̂ = X for the Poisson dis-
tribution; compare Example 3.3. We saw earlier that this is unbiased.
Is T also efficient?

To answer this, we first work out the Fisher information: − lnP (X =
x, θ) = −x ln θ + θ + lnx!, so by taking two derivatives and then the
expectation, we find that I(θ) = EX/θ2 = 1/θ. On the other hand,

EX2
1 =

∞∑
k=0

k2
θk

k!
e−θ = θ2

∞∑
k=0

θk

k!
e−θ + EX1 = θ2 + θ;

the first step follows by writing k2 = k(k − 1) + k. Thus Var(X1) = θ,
hence Var(T ) = θ/n, and T is efficient.

Exercise 3.18. In this problem, you should frequently refer to results
and calculations from Example 3.4. Consider the density f(x, θ) =
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θe−θx (x ≥ 0) and f(x) = 0 for x < 0. Recall that

T =
n− 1

n
Y, Y = 1/X

is an unbiased estimator for θ.
(a) Find the Fisher information I(θ) for this density.
(b) Compute Var(T ); conclude that T is not efficient. (Later we will
see that T nevertheless has the smallest possible variance among all
unbiased estimators.)

Suggestion: Use the density of Y from (3.4) to work out EY 2, and
then ET 2 and Var(T ). Avoid the trap of forgetting that the θ of the
present exercise corresponds to 1/θ in (3.4).

Example 3.11. Let’s now try to estimate the variance of an N(0, σ)
distribution. We take θ = σ2 as the parameter labeling this family of
densities. Two unbiased estimators come to mind:

T1 =
1

n

n∑
j=1

X2
j , T2 = S2 =

1

n− 1

n∑
j=1

(
Xj −X

)2
We know from Example 3.6 that T1 is the MLE for θ; see (3.5).

We start out by computing the Fisher information. We have − ln f =
(1/2) ln θ +X2/(2θ) + C, so

I(θ) = − 1

2θ2
+

1

θ3
EX2 =

1

2θ2
.

Next, independence gives Var(T1) = (1/n)Var(X2
1 ), and this latter vari-

ance we compute as EX4
1 − (EX2

1 )2.

Exercise 3.19. Show that EX4
1 = 3θ2.

Suggestion: Use integration by parts in the resulting integral.

Since EX2
1 = Var(X1) = θ, this shows that Var(X2

1 ) = 2θ2 and thus
Var(T1) = 2θ2/n. So T1 is efficient.

As for T2, we recall that (n− 1)S2/θ ∼ χ2(n− 1) and also that n− 1
iid N(0, 1)-distributed random variables have this same distribution.
More explicitly, (n−1)S2/θ has the same distribution as Z =

∑n−1
j=1 Y

2
j ,

with Yj iid and Yj ∼ N(0, 1). In particular, the variances agree, and
Var(Z) = (n − 1)Var(Y 2

1 ) = 2(n − 1), by the calculation we just did.
Thus

Var(S2) = 2(n− 1)
θ2

(n− 1)2
=

2θ2

n− 1
,

and this estimator is not efficient (it comes very close though).
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If we had used n instead of the slightly unexpected n − 1 in the
denominator of the formula defining S2, the resulting estimator Y3 =
n−1
n
S2 has variance

(3.12) Var(Y3) =
2(n− 1)θ2

n2
=
n− 1

n

1

nI(θ)
.

This, of course, does not contradict the CR bound from Corollary 3.5:
this estimator is not unbiased. On the contrary, everything is in per-
fect order, we only need to refer to Theorem 3.4, which handles this
situation. Since k(θ) = EY3 = (n− 1)θ/n, we have k′2 = ((n− 1)/n)2,
and the variance from (3.12) is in fact slightly larger (by a factor of
n/(n− 1)) than the lower bound provided by the theorem.

Exercise 3.20. Consider a random sample drawn from an N(θ, 1) dis-
tribution. Show that (the MLE) X is an efficient estimator for θ.


