
2. Introduction to statistics: first examples

2.1. Introduction. The basic problem of statistics is to draw conclu-
sions about unknown distributions of random variables from observed
values. These conclusions inevitably will have to be (you guessed it)
statistical in nature: if you flip heads 100 times in a row, then perhaps
both sides of this coin are heads, or it could be a perfectly fair coin and
you just had a lucky run of heads, and obviously you can’t tell for sure
which explanation is right. In mathematical statistics, we try to deal
with this uncertainty in a controlled and quantitative way, if we can.

For a typical situation, consider a random variable X with a distri-
bution that depends on an unknown parameter θ. We can describe it
by giving the probabilities pn(θ) = P (X = xn) (discrete case) or the
density f(x, θ) (continuous case). Suppose we have iid random vari-
ables X1, . . . , Xn with this distribution; in statistics, this is also called
a random sample. The real life situation we have in mind here is that
of a random experiment that we can repeat as many times as we wish,
and the individual experiments are independent of each other.

Definition 2.1. Let X1, . . . , Xn be a random sample. A statistic is a
function T = T (X1, . . . , Xn).

In other words, a statistic is a random variable itself, but one of a
special form: it is a function of the random sample. The definition is
completely general, but what we have in mind here is a more concrete
situation where T serves as a guess on the unknown parameter θ: if
we observe the values x1, . . . , xn of the random sample, then we guess
θ = T (x1, . . . , xn), and we are really interested in statistics T for which
this guess is reasonable, in various senses that we will make precise
later. If T is indeed used in this way to guess a parameter, we also call
T an estimator.

Let’s look at an example: Suppose P (X1 = 1) = θ, P (X1 = 0) =
1− θ, with 0 ≤ θ ≤ 1. You can think of a biased coin with an unkown
probability θ of coming up heads. You now observe a random sample
of size n, or, in plain English, you toss this coin n times and observe
the results xj = 0, 1 for j = 1, . . . , n. What would now be a good
statistic T = T (X1, . . . , Xn) if you want to take a guess on the value of
θ? Obviously, there is only one sane way to go about it: we guess that

(2.1) T =
1

n
(X1 + . . .+Xn).

To make the theory more mathematical, we will, over the course of the
semester, compile various desirable properties that we would like our
statistics to have. For example:
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Definition 2.2. A statistic T is called unbiased if ET = θ for all θ.

So while an unbiased estimator may of course return incorrect values
in any given case, things at least come out right on average, no matter
what the unknown parameter is actually equal to. Note also that the
expectation ET is taken with respect to the unknown, θ-dependent
distribution, so we could have written EθT to emphasize this.

The estimator T from (2.1) is unbiased:

ET =
1

n
(EX1 + . . .+ EXn) = EX1 = θ

T has many other desirable properties, and we will return to this ex-
ample many times.

While it is nice to have unbiased estimators, this criterion cannot
be used uncritically. Consider the following example: you have an urn
with an unknown number N = θ of balls in it, and these are numbered
1, 2, . . . , N . (I’ll write N instead of θ for the unknown parameter be-
cause it feels more natural in this example.) You now draw balls, with
replacement, n times from this urn, and you would like an estimator
T for N , based on this random sample (please don’t spoil the fun by
asking why I don’t draw without replacement until the urn is empty).

Let’s make this more formal. Let Xj be the number of the jth ball
drawn. Then X1, . . . , Xn are iid (= a random sample), with common
distribution P (X1 = m) = 1/N , m = 1, 2, . . . , N . If I draw sufficiently
many times, I would normally hope to get the ball with the maximal
label N at some point, so why don’t we try

T = max(X1, . . . , Xn)

as our statistic. Say I drew 1, 1, 2, 1, 1, 1, 3, 3, 2, 3, 1, 1, 1, 2: then I’ll
guess N = T (. . .) = 3.

Clearly, T is biased: we cannot get values T > N , but we do get
values T < N . More precisely, P (T < N) > 0, so

ET =
N∑
m=1

mP (T = m) ≤ (N − 1)P (T < N) +NP (T = N)

= N − P (T < N) < N.

However, T has redeeming qualities. For example, if our random sam-
ple is large enough, we guess correctly most of the time if we use T :

P (T = N) = 1− P (T < N) = 1−
(
N − 1

N

)n
→ 1 (n→∞)
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This also confirms that while T does show a bias towards values that
are too small, we have ET → N as n→∞, so this bias becomes very
small for large samples.

We can also build an unbiased estimator. To do this, let’s take a
look at the sample mean

X =
1

n
(X1 + . . .+Xn).

We compute

EX = EX1 =
N∑
m=1

m
1

N
=
N(N + 1)

2

1

N
=
N + 1

2
.

So X isn’t unbiased either, but now we can pass to U = 2X − 1, and
this new estimator is unbiased since EU = 2EX − 1 = N .

Of course, U does not feel right at all as an estimator for N ; for
example, repeatedly drawing balls with small numbers will make U
small, but does not provide evidence for a small N . Despite being
biased, T should clearly be preferred. (Later we will see that T has
other highly desirable properties.)

Exercise 2.1. (a) Find the distribution of T , that is, find the probabili-
ties P (T = m), m = 1, 2, . . . , N . Suggestion: Start out by working out
P (T ≤ m).
(b) Show that

ET =
N∑
m=1

m

[(m
N

)n
−
(
m− 1

N

)n]
.

(c) Let’s call this expression µ = µ(N, n). Why don’t we similarly
“fix” T by passing to V = NT/µ, so that EV = N and V is unbiased?
What is wrong with this?

Exercise 2.2. Draw the N balls without replacement, and define the
random variable Yj = 1, . . . , N as the jth ball drawn. Argue that the
Yj still have the same distribution P (Yj = m) = 1/N , m = 1, . . . , N ,
but they are not independent.

Exercise 2.3. Suppose you have a coin that is either fair (p = θ = 1/2),
or you have heads on both sides of the coin (θ = 1). Then the following
statistic T looks like a reasonable estimator for θ:

T =

{
1 X1 = . . . = Xn = 1

1/2 otherwise
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(a) Compute ET for both θ = 1/2 and θ = 1 and conclude that T is
not unbiased.
(b) Now suppose you can also have tails on both sides of the coin
(θ = 0). Define an analogous estimator and show that this estimator
is unbiased.
(c) Come to think of it, in general, if θ takes just two distinct values,
do you really want to insist on unbiased estimators?

Let me conclude this section with a few somewhat sobering remarks.
Let’s go back to the coin flip example. To keep things nice and simple,
let’s in fact assume that the unknown probability θ takes only finitely
many values θ = θ1, . . . , θN . As before, we want to guess θ, based
on the observation of a random sample. It is natural to now define
T (X1, . . . , Xn) as the θj that is closest to X (and take the larger value,
say, if there are two such values).

So far, our analysis has focused on scenarios of the type: Suppose
that θ has a certain value. What can then be said about the behavior
of T? (Pretty much the only quantity we’ve looked at so far is ET ,
but we’ll analyze many other questions of this type as we proceed.)

In a real life application, θ is exactly what we are ignorant about. So
the question we really want to ask is (subtly, perhaps, but crucially)
different from what we actually did. We want to know: “I just guessed
that θ = θj, using the statistic T . I am aware that there is a possibility
of error, but what is the probability that my guess was correct?” Or,
in more mathematical terms, what is the conditional probability

(2.2) P (θ = θj|T = θj)

equal to?
Unfortunately, there isn’t much we can do here. We can work out

the conditional probabilities the other way around, that is, P (T =
θj|θ = θk), and, as discussed, this is essentially what we did, though
we didn’t state it in this way originally. Now if we wanted to obtain
the probabilities from (2.2) from this, we could try to make use of
Bayes’s formula, at least if we also assume or pretend here that θ itself
is random:

(2.3) P (θ = θj|T = θj) =
P (T = θj|θ = θj)P (θ = θj)∑N
k=1 P (T = θj|θ = θk)P (θ = θk)

However, we get stuck here, because we don’t know the a priori prob-
abilities P (θ = θk). In fact, what we did looks reasonable precisely
because we don’t have access to the a priori probabilities. For exam-
ple, if you somehow knew that, say, P (θ = θ1) = 0, then it would
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obviously be foolish to guess that θ = θ1, even if this is what your
carefully constructed statistic is suggesting.

To sum up this discussion, we should really be interested in the
probabilities from (2.2), but these are out of reach, so what we actu-
ally do is only a compromise between the desirable and the feasible.
The situation is similar in all of statistics: we typically control certain
(conditional) probabilities, but if we could have it our way, we would
be much more interested in those probabilities with the event and the
condition switched.

If we make additional assumptions on the P (θ = θk), then we can
try to work with (2.3). In particular, if we assume that they are all
equal to one another, then they will just drop out of (2.3), and we do
obtain a formula for P (θ = θj|T = θj).

Exercise 2.4. You have a large supply of coins, all of them are biased,
but half of them will come up heads more often, for the other half tails
is more likely: let’s say θ = 0.4 or θ = 0.6. You want to guess the θ
of a given coin, based on a random sample of size n = 5. Proceed as
described in the preceding paragraphs, and work out P (θ = 0.4|T =
0.4).

Finally, let’s look at a very specific example that will make the main
point of this whole discussion in a vivid manner, I hope. We want to
test people for psychic abilities by letting them predict the outcomes of
coin tosses. (Tests are actually discussed in Section 6; we proceed infor-
mally here.) Someone without psychic abilities is reduced to guessing,
which means that the probability of getting any given coin flip pre-
dicted correctly is 1/2. We apply rigorous standards and demand a
significance of α = 0.001. This means that someone is falsely declared
a psychic only with probability α = 0.1%. (Or, in more technical
language, the null hypothesis H0 : test subject does not have psychic
abilities is falsely rejected only with probability α when it is correct.)
Since (1/2)10 ' 0.001, we can easily design such a test by letting the
test subject predict 10 coin flips and declaring him or her a psychic if
all 10 predictions were right.

Now the key question: We just declared A a psychic. What is the
probability that this claim is correct? And how is this probability
related to the significance? It is perfectly obvious in this example that
the first question is unanswerable by statistical analysis only. It is
about the real world. For example, if there are no psychics, then the
probability of a correct claim in this scenario is zero, no matter how
carefully the test was designed. Moving on to the second question,
the significance has nothing to do with this; it controls a completely
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different (conditional) probability, namely that of declaring A a psychic,
given that A only guessed.

2.2. Confidence intervals; sample variance. Consider a random
sample X1, . . . , Xn drawn from a normal distribution N(θ, σ) with an
unknown µ = θ; the standard deviation σ is assumed to be known to
us. As we already discussed above, in a slightly different situation, if
we wanted an estimator for θ, the obvious choice would be the sample
mean T = X = (X1 + . . .+Xn)/n.

Here, we would like to proceed somewhat differently. We are looking
for a confidence interval I = I(X1, . . . , Xn) that we expect will contain
θ; or we could say we are looking for two statistics A,B, and now the
interval I = [A,B] will serve as our (somewhat ambiguous) guess on θ.

We would like to meet, to the extent we can, two somewhat con-
tradictory requirements: we would like I to be small, and it should
contain θ with reasonably high probability. It seems natural to try
I = [X−d,X+d] for suitable d = d(X1, . . . , Xn) > 0. By rearranging,
we then have θ ∈ I precisely when

(2.4) θ − d ≤ X ≤ θ + d.

The probability of this event can be worked out; we’ll make use of the
following fact:

Theorem 2.3. Suppose that X1 ∼ N(µ, σ). Then the sample mean X
of a random sample is N(µ, σ/

√
n)-distributed.

Proof. It suffices to establish the following slightly more general claim
(as far as the distributions are concerned) for a sample of size n = 2:
Suppose that X, Y are independent and normally distributed, with pos-
sibly distinct parameters. Then Z = X+Y ∼ N(µX+µY ,

√
σ2
X + σ2

Y ).
This we will verify by a brute force calculation.

Exercise 2.5. Show how the claim of Theorem 2.3 can then be obtained
by repeatedly applying this.

By independence, the joint density of X, Y is the product of the
individual densities.

Exercise 2.6. Verify this. More specifically, check that if we define

QX,Y (A×B) =

∫∫
A×B

fX(x)fY (y) dxdy,

then Q(A × B) = P (X ∈ A)P (Y ∈ B). (This implies that Q(C) =
P ((X, Y ) ∈ C) for C ⊆ R2, as required.)
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Then

(2.5) P (Z ≤ z) =

1

2πσXσY

∫ ∞
−∞

dx

∫ z−x

−∞
dy exp

(
−(x− µX)2

2σ2
X

− (y − µY )2

2σ2
Y

)
,

so, since fZ(z) = (d/dz)P (Z ≤ z), we obtain

(2.6) fZ(z) =
1

2πσXσY

∫ ∞
−∞

exp

(
−(x− µX)2

2σ2
X

− (z − x− µY )2

2σ2
Y

)
dx.

The argument of the exponential function can be rewritten as follows:
it equals

−1

2

(
1

σ2
X

+
1

σ2
Y

)[
x2−2

µXσ
2
Y + (z − µY )σ2

X

σ2
X + σ2

Y

x

+
µ2
Xσ

2
Y

σ2
X + σ2

Y

+
(z − µY )2σ2

X

σ2
X + σ2

Y

]
.

The first two terms in square brackets have the form x2 − 2Ax. We
complete the square. Then the integrand from (2.6) takes the form
exp(−(x−A)2/(2B2)) exp(. . .), where the second exponent is indepen-
dent of x and thus just acts as a factor as far as the integration is
concerned. If we keep track of things more carefully, we find that

(2.7) A =
µXσ

2
Y + (z − µY )σ2

X

σ2
, B =

σXσY
σ

, σ2 ≡ σ2
X + σ2

Y .

In particular, what we are integrating is a normal density again, so we
know the value of the integral:

∫
exp(−(x − A)2/(2B2)) dx =

√
2πB.

If we make use of this, then (2.6) becomes

(2.8) fZ(z) =
1√
2πσ

exp

(
− 1

2σ2σ2
Xσ

2
Y

· Exponent

)
,

where

Exponent = −(σ2A)2 + µ2
Xσ

2
Y σ

2 + (z − µY )2σ2
Xσ

2.

This simplifies further if we plug in A from (2.7) and multiply out the
square:

Exponent = σ2
Xσ

2
Y (µ2

X + (z − µY )2 − 2µX(z − µY ))

= σ2
Xσ

2
Y (z − µX − µY )2

So fZ from (2.8) is indeed the density of a normal distribution with
parameters µX + µY and σ, as claimed. �
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Exercise 2.7. The following fact was tacitly used in this argument: If
X ∼ N(µ, σ) and a > 0, then aX ∼ N(aµ, aσ). Verify this.

Exercise 2.8. Show that the full claim about Z follows as soon as we can
show that fZ(z) = Ce−D(z−E)2 , for some constants C,D > 0, E ∈ R.
(This could have been used to try to save some work in the part after
(2.8).)

Exercise 2.9. Use the calculation from the first part of the proof of The-
orem 2.3 to establish the following general fact: if X, Y are independent
continuous random variables, then Z = X + Y has density

(2.9) fZ(z) =

∫ ∞
−∞

fX(t)fY (z − t) dt.

Exercise 2.10. The RHS of (2.9) is called the convolution of fX , fY and
is also denoted by fX ∗fY . Show that f ∗g = g∗f . (Do this honestly, by
a calculation; however, why is it in fact already clear, from the result
of the previous Exercise, that this has to be true?)

Exercise 2.11. Recall that the moment generating function of a random
variable X is defined as MX(t) = EetX , provided this expectation
converges.
(a) Compute MX(t) for an N(µ, σ)-distributed X. Show that

MX(t) = exp

(
µt+

1

2
σ2t2

)
.

(b) Use this to give a much slicker (and much quicker) proof of Theorem
2.3.

We finally return to (2.4). We now know that X ∼ N(θ, σ/
√
n), so

(2.10)

√
n

σ
(X − θ) ∼ N(0, 1)

(compare Exercise 2.7). An N(0, 1)-distributed random variable will
be within 2 standard deviations (= 2) of its expectation (= 0) with
probability ' 0.954; more generally, for any α, we can extract a zα
from a table so that

(2.11) P (−zα ≤ Z ≤ zα) = 1− α.
So the event

−2
σ√
n
≤ θ −X ≤ 2

σ√
n

has probability 0.954, and we have achieved what we set out to do:
I = [X − 2σ/

√
n,X + 2σ/

√
n] is a 0.954 confidence interval for θ. We

summarize:
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Theorem 2.4. Suppose that X is the sample mean of a random sample
of size n of N(θ, σ)-distributed random variables. For a significance
α > 0, typically small, let zα be as in (2.11), where Z ∼ N(0, 1). Then
the (random) interval

(2.12) I =

[
X − zα

σ√
n
,X + zα

σ√
n

]
is a (1− α) confidence interval for θ: P (θ ∈ I) = 1− α

Note also that while in principle the discussion from the end of the
previous section applies here too, the situation is quite satisfactory
now: we compute an interval, let’s say at significance α = 0.05, and
if this whole procedure is repeated many times, then our claim that
the interval produced contains θ will be right 95% of the time. In
more mathematical terms, what works to our advantage is the fact
that X − θ ∼ N(0, σ/

√
n), independently of θ.

Frequently, the random variables we are interested in will not be
normally distributed, and then Theorem 2.4 as stated doesn’t apply.
We can try to work around this, however. First of all, the Central Limit
Theorem guarantees that for any distribution, the random variable
from (2.10) will at least be approximately N(0, 1)-distributed for large
n, provided that, as before, θ = EX1, σ

2 = Var(X1).
Another difficulty is that σ will usually not be known to us. We solve

this problem by also using the data to estimate σ. More specifically,
we make use of the sample variance

S2 =
1

n− 1

n∑
j=1

(Xj −X)2.

Notice that this is a statistic. Apart from the slightly unexpected n−1
(instead of n) in the denominator, this looks like the obvious thing to
try; the formula just mimics the definition of the actual variance, mak-
ing do with what we have available. Since we will mainly be interested
in large sample sizes n, it doesn’t make a big difference whether we use
n − 1 or n in the denominator, so we shouldn’t get very upset about
this, and anyway the choice is justified by the following theorem.

Theorem 2.5. For any distribution, S2 is an unbiased estimator for
σ2 = Var(X1).

Exercise 2.12. Toss a fair coin twice, that is, P (X1 = 0) = P (X1 =
1) = 1/2, n = 2.
(a) Confirm that indeed ES2 = Var(X1). You can do this entirely by
hand; just set up a sample space with four points in it.
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(b) However, show that ES 6= σX1 , so S is not an unbiased estimator
of the standard deviation.

In view of this, shouldn’t we be looking for an unbiased estimator of
the standard deviation, rather than one of the variance? Perhaps so,
but mathematical convenience trumps all other considerations here; S2

as defined above is easy to work with.

Proof. We compute

n∑
j=1

(Xj −X)2 =
n∑
j=1

(X2
j +X

2 − 2XjX) =
n∑
j=1

(X2
j −X

2
),

since
∑
XjX = nX

2
=
∑
X

2
. Thus

(2.13) (n− 1)ES2 = n(EX2
1 − EX

2
),

and we now evaluate EX
2

by a similar calculation:

EX
2

=
1

n2

n∑
j,k=1

EXjXk =
1

n2

(
n∑
j=1

EX2
j +

∑
j 6=k

EXjEXk

)

=
EX2

1

n
− n2 − n

n2
(EX1)

2

Here (and only here) we have used independence to evaluate EXjXk.
If we plug this into (2.13), then we find that

(n− 1)ES2 = n

(
1− 1

n

)(
EX2

1 − (EX1)
2
)

= (n− 1)Var(X1),

as desired. �

So for an arbitrary distribution, we can now proceed as follows to
set up an approximate confidence interval for the unknown mean θ =
EX1, which (we hope) will be valid for large n. Let x1, . . . , xn denote
the observed data: (1) work out the sample standard deviation S =
S(x1, . . . , xn); (2) use (2.12), with σ replaced by S.

For the following problems, you will need a table of (the cumulative
distribution function of) the standard normal distribution. If you don’t
have one available, see:

http://en.wikipedia.org/wiki/Standard normal table

Exercise 2.13. Suppose that for anN(θ, 3)-distributed random variable,
the sample mean X = 10 was observed for a random sample of size
n = 20. Find a 95% confidence interval for θ.
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Exercise 2.14. You would like to obtain a 90% confidence interval for
the unknown mean θ of an N(θ, 3)-distribution of length at most 2. In
other words, you would like to use I = [X − 1, X + 1]. What is the
minimal sample size consistent with these requirements?

Exercise 2.15. Toss a coin n = 10, 000 times; the probability of heads
θ = P (X1 = 1) is unknown. You find that heads occurred 6, 000 times.
(a) Use the method suggested above (replace σ by the sample standard
deviation) to find an approximate 99% confidence interval for θ.
(b) Alternatively, play it by ear, as follows: recall the formula σ =√
θ(1− θ), and use X as an estimator for θ to work around the fact

that θ is not known. Compare with the result from part (a).
(c) Same as (a), but now assume that heads occurred 9, 000 times.

Let’s now return to the situation where the members of the ran-
dom sample X1, . . . , Xn are specifically N(µ, σ)-distributed, but with
an unknown σ. We just said that then we’ll use

T =
X − µ
S/
√
n

and pretend (backed up by the CLT) that T ∼ N(0, 1). This will work
just fine for large n, but of course it is not justified for small n.

It turns out that we can actually determine the exact distribution of
T . We’ll discuss this in some detail; this will also give us the opportu-
nity to introduce two new distributions that come up quite regularly
in statistics.

To get this started, suppose that X ∼ N(0, 1). What is the distri-
bution of Y = X2? This is a routine calculation. Clearly,

P (Y ≤ y) = P (−√y ≤ X ≤ √y) = 1− 2P (X >
√
y) =

= 1−
√

2

π

∫ ∞
√
y

e−t
2/2 dt,

and thus

fY (y) =
d

dy
P (Y ≤ y) =

e−y/2√
2πy

.

More precisely, this formula is valid for y ≥ 0, and obviously fY (y) = 0
for y < 0.

Definition 2.6. We say that a random variable X is χ2(n)-distributed
if X ≥ 0 and has the density

f(x) = cnx
n/2−1e−x/2 (x ≥ 0).
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Here, the constant cn > 0 is chosen so that
∫∞
0
fn(x) dx = 1. In this

situation, we also call X χ2-distributed with n degrees of freedom.

Exercise 2.16. The gamma function is defined as (for x > 0)

Γ(x) =

∫ ∞
0

tx−1e−t dt.

Show that cn = 1/(2n/2Γ(n/2)).

So what we just did can now be rephrased as follows: if X ∼ N(0, 1),
then X2 ∼ χ2(1). Now let’s see if we can also handle a sum X2

1 + . . .+
X2
n, with Xj iid N(0, 1)-distributed random variables.

Theorem 2.7. Suppose that Y1, . . . , Yk are independent and Yj ∼ χ2(nj).
Then Y1 + . . .+ Yk ∼ χ2(n), with n = n1 + . . .+ nk.

Proof. This is similar to Theorem 2.3, but it will be considerably less
tedious, since we’ve now learnt our lesson from that calculation. Also,
I’ll only do the case k = 2, as an illustration. From Exercise 2.9,
we know that the sum of independent random variables has a density
equal to the convolution of the individual densities. To make this more
concrete, if Y1 ∼ χ2(m), Y2 ∼ χ2(n), then the density f of the sum is
given by

f(x) =

∫ ∞
−∞

fY1(t)fY2(x− t) dt = cmcne
−x/2

∫ x

0

tm/2−1(x− t)n/2−1 dt.

This integral still looks moderately scary, but fortunately we only need
to know its dependence on x, so we can proceed as follows:∫ x

0

tm/2−1(x− t)n/2−1 dt = xm/2+n/2−2
∫ x

0

(t/x)m/2−1(1− t/x)n/2−1 dt

= xm/2+n/2−1
∫ 1

0

sm/2−1(1− s)n/2−1 ds

That worked beautifully! The integral is constant, as a function of x;
it only depends on m,n. So we conclude that

f(x) = C(m,n)xm/2+n/2−1e−x/2.

We know that f is a density, and we now see that it has the same form as
the density of the χ2 distribution with m+n degrees of freedom, except
possibly for the constant. This however implies that C(m,n) = cm+n,
as desired, because this is the constant that makes

∫
f = 1. �
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Now let’s return to an N(µ, σ)-distributed random sample and let’s
see what this says about S2. Observe that

(n− 1)S2 =
∑

(Xj −X)2 =
∑

(Xj − µ− (X − µ))2

=
∑

(Xj − µ)2 − 2(X − µ)
∑

(Xj − µ) + n(X − µ)2

=
∑

(Xj − µ)2 − n(X − µ)2.

In other words,

(2.14)
n− 1

σ2
S2 =

∑(
Xj − µ
σ

)2

−
(
X − µ
σ/
√
n

)2

.

By Theorem 2.7, the sum is χ2(n)-distributed, and since
√
n(X −

µ)/σ ∼ N(0, 1), the formula seems to suggest that (n − 1)S2/σ2 ∼
χ2(n− 1). This is indeed correct.

Exercise 2.17. Check more carefully that

X − µ
σ/
√
n
∼ N(0, 1).

Theorem 2.8. Let X1, . . . , Xn be a random sample drawn from an
N(µ, σ) distribution. Then:
(a) X ∼ N(µ, σ/

√
n);

(b) X, S2 are independent;
(c) (n− 1)S2/σ2 ∼ χ2(n− 1);
(d) T = (X − µ)/(S/

√
n) is tn−1-distributed.

Part (d) introduces a new distribution, the Student (after the nom
de plume of William Gosset, who used this distribution in an article
in 1908) or t distribution: We say that a random variable T is tm-
distributed (and we again refer to m as degrees of freedom) if T has
density

f(t) =
dm

(1 + t2/m)(m+1)/2
;

the normalization constant dm = Γ((m + 1)/2)/(
√
πmΓ(m/2)) can

again be expressed in terms of Γ functions. The general fact about this
distribution that is used to obtain part (d) of the theorem is that if U, V

are independent and U ∼ N(0, 1), V ∼ χ2(m), then U/
√
V/m ∼ tm.

Exercise 2.18. Derive the density f of the Student distribution from
this description.

I don’t want to prove Theorem 2.8 in detail here. Once we have (b),
the rest pretty much falls into place. Part (a) is essentially Theorem 2.3
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and was established again in Exercise 2.17 above. Part (c) follows from
(b) and (2.14), more or less as discussed above. Part (d) also follows
from (b) and the properties of the Student distribution, as discussed
in the previous Exercise. (We will actually see a very elegant proof of
(b), which depends on more advanced statistical tools, much later, in
Section 5.3.)

Let’s now return to the example that motivated this whole discus-
sion. We have a random sample drawn from an N(µ, σ) distribution,
with µ and σ both unknown, and we would like to build a (1 − α)
confidence interval for µ. Say α = 0.05, to make this concrete. Then
we define t = t0.05,n by the property that a tn−1-distributed random
variable T satisfies P (−t ≤ T ≤ t) = 0.95. With this definition of t,
Theorem 2.8(d) will then show that

X − t S√
n
≤ µ ≤ X + t

S√
n

with probability 0.95. In other words, [X − tS/
√
n,X − tS/

√
n] is the

exact 0.95 confidence interval we’ve been looking for. We in principle
find t from the condition that

dn−1

∫ t

−t

dx

(1 + x2/(n− 1))n/2
= 0.95,

but of course it is easier to just extract these values from a table. For
example, t0.05,5 ' 2.78, t0.05,10 ' 2.26, t0.05,20 ' 2.09, t0.05,30 ' 2.05.

If we had just used the normal approximation discussed earlier, then
instead of t, we would be using the corresponding value z for the stan-
dard normal distribution, that is,

1√
2π

∫ z

−z
e−x

2/2 dx = 0.95.

This equals z ' 1.96, so, as expected, we obtain a reasonable approxi-
mation for n not too small.

Exercise 2.19. Assume that the score of a randomly chosen student
on a given test is normally distributed, with unknown µ, σ (this is
obviously not literally correct; for example, the possible scores get nei-
ther negative nor arbitrarily large). In a class with n = 5 students,
the scores were 1, 48, 50, 62, 99. Use the t distribution to find a 95%
confidence interval for µ.

Exercise 2.20. Suppose that T is tn-distributed, with n ≥ 2.
(a) Use a direct computation to find ET and Var(T ) (hint: use integra-
tion by parts to compute ET 2; express this in terms of the constants
dn).
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(b) Use the fact (mentioned above, see Exercise 2.17) that if U ∼
N(0, 1), V ∼ χ2(n), U, V independent, then U/

√
V/n ∼ tn to derive

these answers in a different way.


