
STATISTICS

CHRISTIAN REMLING

1. Review of probability

We start out with a quick review of probability theory. A probability
measure P (or just probability, in short) is a function on subsets of a
sample space Ω with the following properties:

(1) 0 ≤ P (A) ≤ 1, P (Ω) = 1 ;
(2) P (A ∪B) = P (A) + P (B) if A ∩B = ∅
The subsets A,B ⊆ Ω are often called events in this context.

Say you roll a fair die. Then you would describe this random ex-
periment with the help of the sample space Ω = {1, 2, . . . , 6} and the
probability measure P ({j}) = 1/6 for j = 1, 2, . . . , 6. Strictly speaking,
I haven’t specified a full probability measure yet: so far, P (A) has been
defined only for one element subsets of Ω, not for general A. However,
additivity (= property (2)) of course forces us to set P (A) = |A|/6 for
arbitrary A ⊆ Ω, and this P does have properties (1), (2).

More generally, this procedure lets us define probability measures on
arbitrary finite or countable sample spaces Ω = {ω1, ω2, . . .}: suppose
we are given numbers pn, 0 ≤ pn ≤ 1, with

∑
pn = 1. Then

(1.1) P (A) =
∑

n:ωn∈A

pn

is a probability measure. The dice example above is of this type, with
pn = 1/6 for n = 1, 2, . . . , 6. Such a finite or countable Ω is called a
discrete sample space.

Exercise 1.1. Show that conversely, every probability P on a discrete
sample space is of the type (1.1) for suitable pn’s. So what exactly are
the pn’s equal to?

A different type of example is obtained if we take Ω = [0, 1], say, and

P (A) =

∫
A

dx.

This is also called the uniform probability measure on [0, 1]. More gen-
erally, we can take an integrable function f(x) ≥ 0 with

∫∞
−∞ f(x) dx =

1
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1 and define

(1.2) P (A) =

∫
A

f(x) dx

on the sample space Ω = R. The previous example can then be viewed
as a special case of this, with f = χ[0,1], the indicator function of the
unit interval. We refer to sample spaces of this type as continuous
sample spaces. The function f from (1.2) is called a density.

I mention in passing that if one wants to develop the theory fully
rigorously, then certain technical issues arise here, which have to be
addressed. For example, P (A) is in fact not defined for all A ⊆ Ω by
(1.2) because we cannot integrate over totally arbitrary subsets of R.
Thus in the continuous case, P will not be defined on all subsets of Ω
but only on so-called measurable sets. Since all moderately reasonable
sets are measurable, we can safely ignore these issues here. Also, to
obtain a reasonably well-behaved theory, one has to replace (2) by a
stronger variant, called σ-additivity:

P

(
∞⋃
n=1

An

)
=
∞∑
n=1

P (An) if Am ∩ An = ∅ for m 6= n

None of this matters for our purposes, so I’ll leave the matter at that.
The central notion of probability theory is that of a random variable.

A random variable is, by definition, a function X : Ω→ R. For exam-
ple, on the sample space Ω = {1, 2, . . . , 6}, the function X(ω) = 2ω+ 3
is a random variable, and so is X(ω) = sin eω. These examples look
rather contrived and not particularly relevant for the average gambler;
typically, one would perhaps be more interested in a random variable
such as

X(ω) =

{
0 ω odd

1 ω even
.

Given a random variable X, the probabilities of events of the form
{ω ∈ Ω : X(ω) ∈ B}, with B ⊆ R, become especially relevant. In fact,
X induces a new probability measure PX on the new sample space
ΩX = R in this way. More precisely, we define

PX(B) = P (X ∈ B) (B ⊆ R).

Here, we use self-explanatory (and very common) notation on the right-
hand side: a condition as the argument of P (such as X(ω) ∈ B) really
refers to the event that is defined by this condition. In other words,
a more explicit (and formally correct) version of the right-hand side
would have been P ({ω ∈ Ω : X(ω) ∈ B}).
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The new probability measure PX on R is called the distribution of
X. The closely related function F : R → R, F (x) = PX((−∞, x]) =
P (X ≤ x) is called the cumulative distribution function of X. In prob-
ability theory and even more so in statistics, we are almost always
interested in random variables; typically, we are told what their distri-
bution is, and since this is good enough to work out the probabilities
of events involving these random variables, the original sample space
can then completely disappear in the background. Very frequently, one
does not even bother to tell what it is.

Again, we will only consider discrete or continuous distributions
here: in the first case, the distribution PX is concentrated on a fi-
nite or countable set {x1, x2, . . .} ⊆ R, and, as above, it suffices to
specify the numbers pn = PX({xn}) = P (X = xn) to determine PX

completely. In the second case, there is a density f so that

P (X ∈ B) =

∫
B

f(x) dx.

Exercise 1.2. Let X be a continuous random variable with density f
and cumulative distribution function F . Show that f = F ′.

The expectation or expected value EX of a random variable X can
be defined as follows:

EX =
∑
n

xnP (X = xn) (discrete),

EX =

∫ ∞
−∞

xf(x) dx (continuous)

In both cases, we only define EX if the sum or integral converges
absolutely. If EX2 also converges, in this sense, then we can also define
the variance of X:

Var(X) = E(X − EX)2

We first take the square here, then do the expectation. This matters:

Exercise 1.3. (a) Give an example of a random variable with (EX)2 6=
EX2.
(b) In fact, show that Var(X) = EX2−(EX)2 for any random variable.
(c) Conclude that (EX)2 ≤ EX2.

The variance measures the average squared deviation from the ex-
pected value. If we take the square root of this, σ =

√
Var(X), then

we obtain a rough measure of how far from its average value X will
typically be. We call σ the standard deviation of X.
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It is not so clear at first what good squaring and later taking the
square root can do here, and indeed a more obvious way to introduce
a typical deviation would have been E|X − EX|. This, however, is
mathematically inconvenient: the absolute value is not as easily han-
dled in algebraic manipulations as squares and square roots. It turns
out that the actual definition of σ is much more useful.

Exercise 1.4. Consider X(ω) = ω on the dice example sample space.
Work out σX and E|X −EX|; in particular, show that these numbers
are distinct.

Events A,B ⊆ Ω are called independent if P (A ∩ B) = P (A)P (B).
This identity can be given a more intuitive form if we make use of
conditional probabilities, defined as

P (A|B) =
P (A ∩B)

P (B)
if P (B) 6= 0.

So if P (B) 6= 0, then A,B are independent precisely if P (A) = P (A|B).
If P (A) 6= 0 as well, then this is also equivalent to P (B) = P (B|A). In
this form, the condition catches the intuitive meaning of independence
perfectly: A,B are independent precisely if the additional knowledge
that B has occurred does not force us to change the probability for A
(and vice versa).

Exercise 1.5. Show that A,B are independent precisely if A,Bc are
independent.

Exercise 1.6. Show that if P (B) = 0 or P (B) = 1, then A,B are inde-
pendent for any A. Also, convince yourself that this result is intuitively
plausible.

Exercise 1.7. Consider the events A = {1, 3, 5}, B = {1, 2, 3}, C =
{1, 6} on the dice sample space. Which pairs are independent? Check
your formal answers against your intuitive understanding.

Exercise 1.8. For what events A is A independent of itself (that is,
A,A are independent)? Please also try to understand your answer
intuitively.

More generally, we call a collection of (possibly more than two, per-
haps infinitely many) events Aj independent if

P (Aj1 ∩ Aj2 ∩ . . . ∩ AjN ) = P (Aj1)P (Aj2) · · ·P (AjN )

for any selection Aj1 , . . . , AjN .
We call random variables X, Y independent if all pairs of events

of the form X ∈ A, Y ∈ B, with A,B ⊆ R are independent. So,
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intuitively, X, Y are independent if knowledge about the values of Y
does not influence the distribution of X at all, and conversely. Say you
toss a coin twice, and you let X and Y be the outcome of the first and
second coin toss, respectively. Then it just has to be true that X, Y are
independent. Let’s try to set this up in a more precise way. A natural
sample space is Ω = {(x, y) : x, y = 0, 1}, with Laplace probability on
this space (and we also identify 0, 1 ↔ H,T ). Then we are interested
in X(ω) = ω1, Y (ω) = ω2, where we now write ω = (ω1, ω2) ∈ Ω, with
ωj = 0, 1.

Exercise 1.9. Verify formally that X, Y are indeed independent.

Independence for a collection of random variables Xj is now defined
in the expected way, by considering arbitrary selections of events of the
form Xjk ∈ Ak, as above.

If X, Y are independent, then EXY = EX ·EY and Var(X + Y ) =
Var(X) + Var(Y ).

Exercise 1.10. Derive the second identity from the first one. Also, give
examples that show that both identities will (in general) fail if X, Y
are not assumed independent.

Exercise 1.11. Consider Ω = [0, 1] with uniform probability measure.
Define random variables Xj as follows: cut [0, 1] into 2j intervals of
equal length 2−j, and then alternate between the values ±1, starting
with −1 (draw a picture; these functions Xj are called the Rademacher
functions).
(a) Show that the Xj, j = 1, 2, 3, . . . are independent, identically dis-
tributed random variables with distribution P (X1 = −1) = P (X1 =
1) = 1/2.
(b) Find another function Y : Ω → {−1, 1} that also has the same
distribution, but is not one the Xj’s. Can you in fact find a Y such
that all of Y,X1, X2, . . . are still independent?

Some distributions occur so frequently that they deserve special
names. A Bernoulli random variable X takes only two values, let’s
say 0 and 1. We call S binomially distributed with parameters n, p (in
symbols: S ∼ B(n, p)) if S takes the values 0, 1, . . . , n and

(1.3) P (S = k) =

(
n

k

)
pk(1− p)n−k.

This is not as arbitrary as it perhaps looks at first sight. One natural
way to produce a B(n, p)-distributed random variable is to start out
with n independent, identically distributed (this is usually abbreviated
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“iid”) Bernoulli random variables X1, . . . , Xn, with P (X1 = 1) = p, so
P (X1 = 0) = 1− p. Then we set

(1.4) S = X1 + . . .+Xn.

We can interpret S as counting the number of successes in a string of
n independent Bernoulli experiments with probability of success equal
to p in each individual trial (and by success we now of course mean
that Xj = 1).

Let’s prove this claim that the S from (1.4) is B(n, p)-distributed.
Actually, before we do this, let’s review another piece of general theory:
For arbitrary random variables Z1, . . . , Zn, it would not be possible to
obtain the distribution of the sum Y = Z1+ . . .+Zn (or other functions
Y = g(Z1, . . . , Zn)) from the individual distributions of the Zj. Rather,
what we need is the joint distribution P (Z1 ∈ A1, . . . , Zn ∈ An); this
can be viewed as a probability measure PZ1,...,Zn on the new sample
space Rn.

Exercise 1.12. Give a simple example that demonstrates that the joint
distribution can not be obtained from the individual distributions. Sug-
gestion: Take Ω = {(x, y) : x, y = 0, 1} and X, Y as in the example
above. Compare this pair of random variables with the pair X,X.
Show that the individual distributions agree, but (of course) the joint
distributions of X, Y and X,X are (very) different.

However, this is not an issue here because we also assumed that the
Xj are independent, and with this extra assumption, we have

P (X1 ∈ A1, . . . , Xn ∈ An) = P (X1 ∈ A1) · · ·P (Xn ∈ An)

(independence is essentially defined by this condition), so we do obtain
the joint distribution from the individual distributions here. In fact,
since the Xj are also identically distributed, the right-hand side equals
P (X1 ∈ A1) · · ·P (X1 ∈ An).

Now let’s return to the problem at hand, namely the distribution of
S from (1.4). Notice that S = k precisely if Xj = 1 for exactly k values
of j = 1, 2, . . . , n, and then of course Xj = 0 for the remaining n − k
values. Each specific sequence of values of this type has probability
pk(1− p)n−k, and now (1.3), for the S from (1.4), follows by counting
the 0, 1 strings of length n with exactly k ones. These are determined
by the slots where we put the ones, so there are

(
n
k

)
such strings.

The binomial distribution comes up frequently; for example, if you
toss a biased coin n times, then this random variable S describes the
total number of 1’s.



STATISTICS 7

Our second example is the normal distribution. This is the most
important distribution of them all. The normal distribution is a con-
tinuous distribution. We say that a random variable X is normally
distributed with mean µ and standard deviation σ if X has density

f(x) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
.

Again, we sometimes write this as X ∼ N(µ, σ). The normal distribu-
tion with µ = 0, σ = 1 is called the standard normal distribution.

Exercise 1.13. Use the evaluation
1√
2π

∫ ∞
−∞

e−x
2/2 dx = 1

to show that f is indeed a density and EX = µ, Var(X) = σ2 if
X ∼ N(µ, σ).

Unlike the binomial (and to some extent, the Poisson) distribution,
the normal distribution is important not because it describes certain
specific basic models but because it has a universal property: an arbi-
trary random experiment, repeated many times and suitably rescaled,
approaches a normal distribution if the individual experiments are in-
dependent. This statement is known as the central limit theorem.

To formulate this precisely, let the Xj be iid random variables. The
common distribution is almost completely arbitrary, we only need to
assume that EX2

1 exists. Let Sn = X1 + . . .+Xn, and let’s abbreviate
µ = EX1, σ

2 = Var(X1). Then ESn = nµ and, by independence,
Var(Sn) = nσ2. We cannot really expect Sn to converge in any sense
as n → ∞ (typically, Sn should take values at about distance σ

√
n

from nµ), but we can consider the rescaled version

Sn − nµ√
nσ

,

which has expectation zero and variance one. Indeed, this is approxi-
mately N(0, 1)-distributed:

Theorem 1.1 (Central Limit Theorem). For a ≤ b, we have that

lim
n→∞

P

(
a ≤ Sn − nµ√

nσ
≤ b

)
=

1√
2π

∫ b

a

e−x
2/2 dx.

Exercise 1.14. To entertain yourself, you toss a coin 40,000 times. Use
the CLT to approximately compute the probability that the coin will
come up heads at most 20,100 times. (Express this as an integral of the
standard normal density, or look up the numerical value in a table.)


