
DYNAMICAL SYSTEMS

CHRISTIAN REMLING

We will discuss two topics from the theory of dynamical systems:
dynamics of the logistic map and Sarkovski’s Theorem.

1. Basic notions

A discrete time dynamical system consists a phase space X and a
map f : X → X. By repeatedly applying f , we obtain the orbit of a
point x ∈ X:

(x, f(x), f(f(x)), . . .)

We think of this sequence as describing the time evolution of the point
x. It will be convenient to denote the n-fold composition of f with
itself by fn, so fn(x) is the result of n applications of f to x.

In the theory of dynamical systems, we are typically interested in
the long time behavior of orbits. This can depend very sensitively on
small details, even in simple examples.

As an illustration, consider the rotation by α on the unit circle S1 =
{eiϕ : 0 ≤ ϕ < 2π}. So f(eiϕ) = ei(ϕ+α).

Exercise 1.1. Show that this system has periodic orbits precisely if
α/(2π) ∈ Q.

We call a point x ∈ X periodic if fn(x) = x for some n ≥ 1. The
smallest such n is called the period of x.

On the other hand, if α/(2π) /∈ Q, then, roughly speaking, the orbit
of an arbitrary eiϕ fills out the whole unit circle; it is dense.

Exercise 1.2. Show this. More precisely, show that given any x, y ∈ S1

and ε > 0, there exists n ≥ 0 so that |fn(x)− y| < ε.

It can in fact be shown that subsets I of the unit circle get their fair
share `(I)/(2π) of orbit points if the system is run long enough; here,
`(I) denotes the arc length of I.

2. One-dimensional systems

By this we mean system with phase space X = R, or a subset of R.
We also assume for convenience that f ∈ C∞(R).
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A fixed point is a point p with f(p) = p (equivalently, a periodic
point with period 1). Let’s try to find the fixed points of the simple
example f(x) = x3. These are the points that satisfy x3 = x, so the
fixed points are x = 0 and x = ±1. These points do not get moved at
all by the dynamics. If 0 < x < 1, then we claim that fn(x) → 0. To
prove this carefully, the following fact is useful.

Theorem 2.1. If fn(x)→ x0, then f(x0) = x0.

Proof. Since f is continuous, we have that

f(x0) = lim
n→∞

f(fn(x)) = lim
n→∞

fn+1(x) = x0.

�

So orbits can only converge to fixed points.
Let’s now look again at fn(x) for 0 < x < 1. Clearly, the sequence is

decreasing and bounded below by 0. Thus it converges to some limit,
which must lie in [0, 1). Theorem 2.1 says that the limit has to be a
fixed point, and the only fixed point in this range is 0. This proves our
claim.

Similarly, one can show that fn(x) → ∞ if x > 1. Also, fn(x) → 0
for −1 < x < 0 and fn(x)→ −∞ for x < −1.

If we review the whole situation, it appears that 0 attracts orbits
while the other two fixed points ±1 repel them. We can give a precise
definition that captures this intuition. We call a fixed point p stable if
for every ε > 0, there exists δ > 0 so that |fn(x)− p| < ε for all n ≥ 0,
provided that |x− p| < δ. We also introduce the stable set of p

W s(p) = {x : fn(x)→ p}.
We then call p an attracting fixed point if p is stable and W s(p) ⊃
(p − ε, p + ε) for some ε > 0. There is a similar notion of repelling
fixed points as those points that attract orbits under backward time
evolution, but we don’t want to make this precise (note that if f is not
invertible, it’s not clear how one can unambiguously go back in time).

In the above example, W s(0) = (−1, 1) and 0 is stable, so it is an
attracting fixed point. The other two fixed points are repelling.

Theorem 2.2. Suppose that p is a fixed point with |f ′(p)| < 1. Then
p is attracting.

Proof. Since f ′ is continuous, we can find an interval [p − d, p + d] so
that |f ′| ≤ q < 1 on this interval. Then, if x ∈ [p− d, p+ d], the mean
value theorem shows that

|f(x)− p| = |f ′(t)| |x− p| ≤ q|x− p|.
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In particular, f(x) lies in the same interval and we can repeat this
argument. By iterating, we find that |fn(x) − p| ≤ qn|x − p|. This
shows that p is stable and W s(p) ⊃ (p− d, p+ d). �

Similarly, it can be shown that p will be repelling if |f ′(p)| > 1.

Exercise 2.1. (a) Find the fixed points of the map

f(x) =
1

2
(x2 − x).

Which of these are attracting? FindW s for the attracting fixed point(s).
(b) Compute f 2(x). Then show that f has no periodic points of period
2.

Exercise 2.2. Consider the tent map

f(x) =

{
2x 0 ≤ x ≤ 1/2

2− 2x 1/2 ≤ x ≤ 1

on X = [0, 1].
(a) Sketch the graph of f and f 2. What does the graph of fn look like?
Use this information to conclude that fn has exactly 2n fixed points
(equivalently, the system has exactly 2n periodic points whose period
is a divisor of n). Show that the periodic points are dense in [0, 1].
(b) Show that fn(x) = 2Nn ± 2nx, where Nn is an integer. Conclude
that x /∈ Q is never periodic, so the non-periodic points are also dense.

3. The logistic map

This is the name given to the map

f(x) = fµ(x) = µx(1− x),

with µ > 0. It’s easy to check that f has two fixed points, 0 and
pµ = (µ−1)/µ. Moreover, f ′(0) = µ, f ′(pµ) = 2−µ, so for µ > 3, both
fixed points are repelling. The fact that |f ′| > 1 at the fixed points
also implies that fn(x) cannot converge if x 6= 0, pµ.

Exercise 3.1. Prove this carefully.

Proposition 3.1. Suppose that µ > 1. If x /∈ [0, 1], then fn(x)→ −∞.

Proof. If x < 0, then

f(x) = µx− µx2 < µx < x,

so the sequence fn(x) is decreasing. Thus, it will either approach a
limit or diverge to −∞. The first case is impossible because there are
no negative fixed points.

If x > 1, then f(x) < 0. �
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4. Conjugacy of systems

The notion of an isomorphism is fundamental in any mathematical
theory. One thinks of isomorphic objects as different concrete realiza-
tions of the same structure.

For example, the structure of a topological space is, by definition,
given by the collection of its open sets, and thus the appropriate defini-
tion of an isomorphism asks for a bijective map that maps precisely the
open sets to open sets again (it does not do anything really but change
names). In this context, the isomorphism are called homeomorphisms.

Now suppose we are given two dynamical systems (X, f), (Y, g), with
phase spaces X, Y that are topological spaces (we will then also insist
that f , g are continuous maps).

Definition 4.1. We call (X, f), (Y, g) (topologically) conjugate if there
exists a homeomorphism ϕ : X → Y so that f = ϕ−1 ◦ g ◦ ϕ. We then
call ϕ a (topological) conjugacy between these systems.

Again, we can interpret conjugate systems as different realizations of
the same (topological) dynamical system. In particular, all properties
of one system carry over to the other system. For example:
(a) x ∈ X is a periodic point of period n if and only if ϕ(x) is periodic
of period n.
(b) x ∈ X is an attracting fixed point if and only if ϕ(x) is an attracting
fixed point.

Exercise 4.1. Prove these statements.

Exercise 4.2. Show that the rotations Tα(z) = zeiα and T−α define
conjugate systems on the unit circle. Can you also provide an example
where Tα, Tβ are not conjugate?

5. The invariant Cantor set for the logistic map

We now return to the map f(x) = µx(1− x), for µ > 4. We will in
fact focus on I = [0, 1]. We saw above that fn(x) → −∞ as soon as
fn0(x) /∈ I for some n0. Are there any points whose orbits will stay in
I forever? This is answered by the following result.

Theorem 5.1. Assume that µ > 4, and define

Y = {x ∈ I : fn(x) ∈ I for all n ≥ 0}.
Then Y is a (= homeomorphic to the) Cantor set.

We will in fact only prove this under the somewhat stronger assump-
tion that µ > 2 +

√
5; this will simplify one part of the proof.
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Proof. By direct inspection of f , we see that f−1(I) = I1∪I2, with two
disjoint intervals I1 = [0, x−], I2 = [x+, 1]. (A calculation shows that

x± = 1/2±
√

1/4 + 1/µ, but we won’t need these formulae.)
Clearly, x, f(x) ∈ I if and only if x ∈ I1 ∩ I2. Similarly, we will have

that, in addition, f 2(x) ∈ I precisely if x ∈
⋃
Ij0j1 , where

Ij0j1 = {x ∈ I : x ∈ Ij0 , f(x) ∈ Ij1}.
More generally, we define

Ij0...jn = {x ∈ I : x ∈ Ij0 , . . . , fn(x) ∈ Ijn}
and

Cn =
⋃

j0,...,jn=1,2

Ij0...jn .

It is clear that Y =
⋂
Cn, and we’re hoping that this displays Y as

a Cantor set type intersection of collections of disjoint intervals. To
confirm this, we need some preparations.

Lemma 5.2. (a) Cn∩Ij0...jn−1 = Ij0...jn−11∪Ij0...jn−12 is a disjoint union
of two non-empty closed intervals.
(b) If (j0, . . . , jn) 6= (j′0, . . . , j

′
n), then the intervals Ij0...jn, Ij′0...j′n are

disjoint. Thus Cn is a disjoint union of 2n+1 intervals.
(c) f maps Ij0...jn homeomorphically onto Ij1...jn.

Exercise 5.1. Find the relative location of the intervals Ij0j1j2 , jk = 1, 2.

Proof of Lemma 5.2. Notice that Cn is the set of all x ∈ I for which
x, f(x), . . . , fn(x) ∈ I1 ∪ I2. Moreover, a fixed subset Ij0...jn ⊂ Cn con-
tains exactly those x ∈ Cn for which the orbit follows the corresponding
itinerary

x ∈ Ij0 , . . . , fn(x) ∈ Ijn .
From the definition, we also have that

(5.1) Ij0...jn = Ij0 ∩ f−1(Ij1...jn).

Now if J ⊂ [0, 1] is a closed interval, then f−1(J) is a disjoint union of
two closed intervals, one contained in I1 and one in I2. This we see by
looking at the graph of f . As a consequence, (5.1) now indeed shows
that all Ij0...jn are closed intervals (use induction on n!).

Statements (a) and (b) follow now from these observations. As f ,
restricted to Ij for j = 1 or j = 2, is injective, (5.1) also shows that (c)
holds. �

In particular, the sets Cn are closed, and hence so is Y =
⋂
Cn. Since

Y ⊂ [0, 1], this in fact shows that Y is compact. We want to show that
Y is also perfect (no isolated points) and totally disconnected (does
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not contain an interval). This will be a consequence of the fact that
the lengths of the subintervals of Cn go to zero as n→∞:

(5.2) lim
n→∞

max
j0,...,jn

|Ij0...jn| = 0

Exercise 5.2. Show that (5.2) indeed implies that
⋂
Cn is perfect and

totally disconnected.

To establish (5.2), we will make use of the following estimate:

Lemma 5.3. Suppose that µ > 2 +
√

5. Then minx∈I1∪I2 |f ′(x)| > 1.

Proof of Lemma 5.3. We have that f ′(x) = µ(1 − 2x) and f ′′(x) =
−2µ < 0, so the smallest value of |f ′| on I1 ∪ I2 occurs at x+ or
x−. At these points, f(x±) = 1, so a calculation shows that x± =

1/2±
√

1/4− 1/µ. Hence

|f ′(x±)| =
√
µ2 − 4µ.

This last expression is strictly large than 1 if µ > 2+
√

5, as claimed. �

Let q = minI1∪I2 |f ′|. Then, by the Lemma, q > 1. Moreover, Lemma
5.2(c), combined with the mean value theorem shows that

|Ij1...jn| = |f ′(c)| |Ij0...jn| ≥ q |Ij0...jn| .

By iterating this inequality, we obtain that

|Ij0...jn| ≤ Cq−n,

and this gives (5.2). �

6. Symbolic dynamics on the invariant Cantor set

We call the Cantor set Y invariant because it has the property that
f(y) ∈ Y if y ∈ Y . In particular, we can restrict our attention to Y ;
we obtain a new (smaller) dynamical system (Y, f).

We denote by X2 the space {1, 2}N of sequences x = (x1, x2, . . .) on
two symbols xj = 1, 2. We also define a metric on X2, as follows:

d(x, y) =
∞∑
n=1

|xn − yn|3−n

We already know that (X2, d) is a compact space; in fact, it is home-
omorphic to the Cantor set. The shift (Sx)n = xn+1 is a continuous
map on X2.

Exercise 6.1. Show this.
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From the material of the previous section, we have a natural map
from Y to X2: we map a point y to its itinerary j0, j1, . . .. We call this
the itinerary map and denote it by h : Y → X2.

Theorem 6.1. The itinerary map provides a topological conjugacy be-
tween the systems (Y, f) and (X2, S).

Recall that this means that h has the following properties:
(1) h : Y → X2 is a homeomorphism.
(2) f = h−1 ◦ S ◦ h
Proof. Property (2) is clear from the construction once we have (1).
Let’s first check that h is onto. So let x = (x1, x2, . . .) ∈ X2. By
Lemma 5.2(a), the intervals I(n) = Ix1x2...xn are all closed and non-
empty, and they are nested: I(1) ⊃ I(2) ⊃ . . . Thus their intersection⋂
I(n) is non-empty, and any t ∈

⋂
I(n) satisfies ϕ(t) = x (t is in fact

unique).
Next, we show that h is injective. We again do this only under

the slightly stronger assumption that µ > 2 +
√

5. We saw above,
in Lemma 5.3, that then q = minI1∪I2 |f ′| > 1. This implies that
|f(x) − f(y)| ≥ q|x − y| if x, y both lie in the same interval Ij for
j = 1 or 2. Now h(x) = h(y) says that fn(x), fn(y) in fact are in
the same interval Ixn for all n, thus |fn(x)− fn(y)| ≥ qn|x− y|. Since
|fn(x)− fn(y)| ≤ 1, this implies that x = y.

Finally, to show that h is continuous, we only need to observe that
if fn(x) ∈ I1, say, then fn(y) /∈ I2 for all y sufficiently close to x. Since
either fn(x) ∈ I1 or fn(x) ∈ I2 for all n if x ∈ Y , this shows that if
x ∈ Y and N ∈ N are given, we can find an ε > 0 so that the first N
entries of h(y) agree with those of h(x) for all y ∈ Y , |y − x| < ε. It
follows that

d(h(y), h(x)) ≤
∑
n>N

3−n = 2 · 3−N .

This verifies that h is continuous, and as h is a bijection between com-
pact metric spaces, continuity of the inverse is now automatic. �

This representation of (Y, f) as a shift on two symbols gives a lot of
interesting information about the system:

Theorem 6.2. (a) fn has exactly 2n fixed points.
(b) The periodic points are dense in Y .
(c) There exist points y ∈ Y whose orbit is dense in Y ; in fact, the set
of such points is itself dense in Y .
(d) There exists a constant d > 0 such that the following holds: for
any y ∈ Y and ε > 0, there exists y′ ∈ Y with |y − y′| < ε so that
|fn(y)− fn(y′)| ≥ d for all n ≥ N = N(y, ε).
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Proof. We will work with the symbolic representation (X2, S) of (Y, f).
(a) Notice that x ∈ X2 is a fixed point of Sn precisely if the initial

block (x1 . . . xn) is repeated indefinitely. There are 2n such blocks of
length n.

(b) Again, we can establish this by showing that (X2, S) has the
same property. If x ∈ X2 is given, let yn = xn for 1 ≤ n ≤ N and then
continue periodically to define yn for n > N . Then y is periodic with
period ≤ N , and

d(x, y) ≤
∑
n>N

3−n = (1/2)3−N .

N was arbitrary here, so there are periodic points arbitrarily close to
x, as claimed.

(c) Let
y = (0|1|00|01|10|11|000| . . .);

this point has a dense orbit because for any given x ∈ X2 and N ∈ N,
a suitable shift Sny will agree with x on an initial piece of length ≥ N .

More generally, we can start with an arbitrary finite block and then
construct the remaining digits as above, to obtain a point with a dense
orbit that is close to a given point.

(d) We can take d > 0 as the length x+ − x− of the first gap. Then
|x − y| ≥ d whenever the first digits of the symbolic representations
h(x), h(y) differ from each other. Given y ∈ Y , we can now obtain
y′ as follows: Consider the symbolic representation x = h(y) of y, let
x′n = xn for n = 1, . . . , N and x′n 6= xn for n > N . Then, as above,
d(x, x′) = (1/2)3−N , so |y−y′| will be small as well by the continuity of
h−1. Moreover, by construction, |fn(y)−fn(y′)| ≥ d for all n > N . �

Exercise 6.2. Prove in similar style that (Y, f) is topologically mixing:
If x, y ∈ Y and N ∈ N, ε > 0 are given, then there are x′ ∈ Y and
n ≥ N so that |x− x′| < ε, |fn(x′)− y| < ε.

Exercise 6.3. How many periodic points of exact (!) period 6 does the
system (R, f) have?

Exercise 6.4. Are there points y ∈ Y that are not periodic and whose
orbit is not dense in Y ?

7. Sarkovskii’s Theorem

To state Sarkovskii’s Theorem in full generality, we need to introduce
the Sarkovskii ordering of the positive integers:

3 � 5 � 7 � . . . � 2 · 3 � 2 · 5 � . . . � 22 · 3 � . . . �
2n · 3 � 2n · 5 � . . . � 2n+1 � 2n � . . . � 2 � 1
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In 1964, Sarkovskii proved the following striking result:

Theorem 7.1 (Sarkovskii). Suppose that the continuous map f : R→
R has a point of period n and n � k. Then f has a point of period k.

We will discuss only a special case (“period 3 implies chaos”) of
Sarkovskii’s Theorem, but this, too, is quite spectacular:

Corollary 7.2. Suppose that the continuous map f : R → R has a
point of period 3. Then f has periodic points of all periods.

Proof. Let a be a point of period 3. We will assume that specifically

a = f 3(a) < f(a) < f 2(a).

Please convince yourself that up to reflection and replacing a with
fk(a), this is in fact the general case.

Let I1 = [a, f(a)], I2 = [f(a), f 2(a)]. By the intermediate value the-
orem, f(I1) ⊃ I2. It will be convenient to introduce a special notation
for this kind of situation. We say that an interval I f -covers another
interval J if f(I) ⊃ J ; in this case, we write I → J .

Lemma 7.3. Let I, J be closed intervals and suppose that I → J . Then
there exists a closed subinterval K ⊂ I so that f(K) = J , f(∂K) = ∂J ,
f(int(K)) = int(K).

Proof of Lemma 7.3. Write J = [b1, b2]. Fix a1, a2 ∈ I with f(aj) = bj.
Let’s assume that a1 < a2, the other case being similar. Let

x1 = sup{x ∈ [a1, a2] : f(x) = b1}.
Then f(x1) = b1, by continuity, and f(x) > b1 for x > b1, from the
definition of x1. In particular, x1 < a2, so we can now define

x2 = inf{x ∈ [x1, a2] : f(x) = b2}.
As before, we notice that f(x2) = b2 and f(x) < b2 for x < x2. Thus
the interval K = [x1, x2] has the desired properties. �

Lemma 7.4. Suppose that the compact interval I f -covers itself. Then
f has a fixed point in I.

Proof of Lemma 7.4. Use the previous lemma to find a subintervalK =
[a, b] ⊂ I = [c, d] with f(K) = I and either:
(i) f(a) = c ≤ a, f(b) = d ≥ b, or
(ii) f(a) = d > a, f(b) = c < b.

In both cases, the intermediate value theorem shows that g(x) =
f(x)− x has a zero in [a, b]. �

Lemma 7.5. Suppose that J0 → J1 → . . .→ Jn = J0. Then fn has a
fixed point x0, and fk(x0) ∈ Jk for k = 0, 1, . . . , n.
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Note that the intervals Jk need not be distinct here.
The existence of a fixed point x0 of fn is an immediate consequence

of Lemma 7.4 since we certainly have that fn(J0) ⊃ J0. To obtain the
somewhat more precise statement of the Lemma, we need to take a
closer look at the situation.

Proof of Lemma 7.5. We make the following claim, which we will prove
by induction on j: There exists a subinterval Kj ⊂ J0 such that
fk(Kj) ⊂ Jk, fk(int(Kj)) ⊂ int(Jk) for k = 1, . . . , j and f j(Kj) = Jj.

For j = 1, this is Lemma 7.3. Now assume the statement holds for
j−1, that is, there exists a subinterval Kj−1 ⊂ J0 with the above prop-
erties. In particular, f j(Kj−1) = f(Jj−1) ⊃ Jj, so Lemma 7.3, applied
to f j, lets us find a subinterval Kj ⊂ Kj−1 such that f j(Kj) = Jj and
f j(int(Kj)) = int(Jj). This interval Kj has the desired properties.

In particular, fn(Kn) = J0, and, as observed above, we now obtain
the existence of a fixed point x0 ∈ Kn of fn from Lemma 7.5. By
construction, f j(x0) ∈ Jj. �

We can now finish the proof of Corollary 7.2 as follows. Notice that
I1 → I2 and I2 → I1, I2 → I2. In particular, this last fact implies the
existence of a fixed point. If n ≥ 2, n 6= 3 is given, we consider the
loop

I1 → I2 → I2 → I2 → . . .→ I2 → I1,

with n−1 copies of I2 in the middle. By Lemma 7.5, there exists x0 ∈ I1
with fn(x0) = x0 and f j(x0) ∈ I2 for j = 1, . . . , n − 1. We claim that
x0 has exact period n. Indeed, if fk(x0) = x0 for some k < n, then it
would follow that x0 ∈ I1 ∩ I2, so x0 = f(a). However, we know that
this point has period 3, so this is only possible if n = 3k, but even in
this case we obtain a contradiction to the pattern (f j(x0) ∈ I2) that
was observed above. �


