
6. Operators in Hilbert spaces

Let H be a Hilbert space. In this chapter, we are interested in ba-
sic properties of operators T ∈ B(H) on this Hilbert space. First of
all, we would like to define an adjoint operator T ∗, and its defining
property should be given by 〈T ∗y, x〉 = 〈y, Tx〉. It is not completely
clear, however, that this indeed defines a new operator T ∗. To make
this idea precise, we proceed as follows: Fix y ∈ H and consider the
map H → C, x 7→ 〈y, Tx〉. It is clear that this is a linear map, and

|〈y, Tx〉| ≤ ‖y‖ ‖Tx‖ ≤ ‖y‖ ‖T‖ ‖x‖,

so the map is also bounded. By the Riesz Representation Theorem,
there exists a unique vector z = zy ∈ H with 〈y, Tx〉 = 〈zy, x〉 for
all x ∈ H. We can now define a map T ∗ : H → H, T ∗y = zy. By
construction, we then indeed have 〈T ∗y, x〉 = 〈y, Tx〉 for all x, y ∈ H;
conversely, this condition uniquely determines T ∗y for all y ∈ H. We
call T ∗ the adjoint operator (of T ).

Theorem 6.1. Let S, T ∈ B(H), c ∈ C. Then:
(a) T ∗ ∈ B(H);
(b) (S + T )∗ = S∗ + T ∗, (cT )∗ = cT ∗;
(c) (ST )∗ = T ∗S∗;
(d) T ∗∗ = T ;
(e) If T is invertible, then T ∗ is also invertible and (T ∗)−1 = (T−1)∗;
(f) ‖T‖ = ‖T ∗‖, ‖TT ∗‖ = ‖T ∗T‖ = ‖T‖2 (the C∗ property)

Here, we call T ∈ B(H) invertible (it would be more precise to say:
invertible in B(H)) if there exists an S ∈ B(H) with ST = TS = 1. In
this case, S with these properties is unique and we call it the inverse of
T and write S = T−1. Notice that this version of invertibility requires
more than just injectivity of T as a map: we also require the inverse
map to be continuous and defined everywhere on H (and linear, but
this is automatic). So we can also say that T ∈ B(H) is invertible (in
this sense) precisely if T is bijective on H and has a continuous inverse.
Actually, Corollary 3.3 shows that this continuity is automatic also, so
T ∈ B(H) is invertible precisely if T is a bijective map.

Exercise 6.1. (a) Show that it is not enough to have just one of the
equations ST = 1, TS = 1: Construct two non-invertible maps S, T ∈
B(H) (on some Hilbert space H; H = `2 seems a good choice) that
nevertheless satisfy ST = 1.
(b) However, if H is finite-dimensional and ST = 1, then both S and
T will be invertible. Prove this.
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Proof. (a) The (anti-)linearity of the scalar product implies that T ∗ is
linear; for example, 〈cT ∗y, x〉 = 〈T ∗y, cx〉 = 〈y, T (cx)〉 = 〈cy, Tx〉 for
all x ∈ H, so T ∗(cy) = cT ∗y. Furthermore,

sup
‖y‖=1

‖T ∗y‖ = sup
‖x‖=‖y‖=1

|〈T ∗y, x〉| = sup
‖x‖=‖y‖=1

|〈y, Tx〉| = ‖T‖,

so T ∗ ∈ B(H) and ‖T ∗‖ = ‖T‖.
Parts (b), (c) follow directly from the definition of the adjoint ope-

rator. For example, to verify (c), we just observe that 〈y, STx〉 =
〈S∗y, Tx〉 = 〈T ∗S∗y, x〉, so (ST )∗y = T ∗S∗y.

(d) We have 〈y, T ∗x〉 = 〈T ∗x, y〉 = 〈x, Ty〉 = 〈Ty, x〉, so T ∗∗y = Ty.
(e) Obviously, 1∗ = 1. So if we take adjoints in TT−1 = T−1T = 1 and

use (c), we obtain (T−1)∗T ∗ = T ∗(T−1)∗ = 1. Since (T−1)∗ ∈ B(H),
this says that T ∗ is invertible and (T ∗)−1 = (T−1)∗.

(f) We already saw in the proof of part (a) that ‖T ∗‖ = ‖T‖. It is
then also clear that ‖T ∗T‖ ≤ ‖T ∗‖‖T‖ = ‖T‖2. On the other hand,

‖T ∗T‖ = sup
‖x‖=‖y‖=1

|〈y, T ∗Tx〉| ≥ sup
‖x‖=1

|〈x, T ∗Tx〉| = sup
‖x‖=1

‖Tx‖2 = ‖T‖2,

so ‖T ∗T‖ = ‖T‖2. If applied to T ∗ in place of T , this also shows that
‖TT ∗‖ = ‖T ∗∗T ∗‖ = ‖T ∗‖2 = ‖T‖2. �

Theorem 6.2. Let T ∈ B(H). Then N(T ∗) = R(T )⊥.

Proof. We have x ∈ N(T ∗) precisely if 〈T ∗x, y〉 = 0 for all y ∈ H, and
this happens if and only if 〈x, Ty〉 = 0 (y ∈ H). This, in turn, holds if
and only if x ∈ R(T )⊥. �

We will be especially interested in Hilbert space operators with ad-
ditional properties.

Definition 6.3. Let T ∈ B(H). We call T self-adjoint if T = T ∗,
unitary if TT ∗ = T ∗T = 1 and normal if TT ∗ = T ∗T .

So self-adjoint and unitary operators are also normal. We introduced
unitary operators earlier, in Chapter 5, in the more general setting of
operators between two Hilbert spaces; recall that we originally defined
these as maps that preserve the complete Hilbert space structure (that
is, the algebraic structure and the scalar product). Theorem 6.4(b)
below will make it clear that the new definition is equivalent to the old
one (for maps on one space). Also, notice that U is unitary precisely if
U is invertible (in B(H), as above) and U−1 = U∗.

Here are some additional reformulations:

Theorem 6.4. Let U ∈ B(H). Then the following statements are equi-
valent:
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(a) U is unitary;
(b) U is bijective and 〈Ux, Uy〉 = 〈x, y〉 for all x, y ∈ H;
(c) U is surjective and isometric (that is, ‖Ux‖ = ‖x‖ for all x ∈ H).

Exercise 6.2. Prove Theorem 6.4. Suggestion: Use polarization to derive
(b) from (c).

We now take a second look at (orthogonal) projections. Recall that,
by definition, the projection on the closed subspace M ⊆ H is the
operator that sends x ∈ H to y ∈ M , where y is the part from M in
the (unique) decomposition x = y + z, y ∈ M , z ∈ M⊥. If P = PM

is such a projection, then it has the following properties: P 2 = P (see
Proposition 5.10), R(P ) = M , N(P ) = M⊥

Exercise 6.3. Prove these latter two properties. Also, show that Px = x
if and only if x ∈M = R(P ).

Theorem 6.5. Let P ∈ B(H). Then the following are equivalent:
(a) P is a projection;
(b) 1− P is a projection;
(c) P 2 = P and R(P ) = N(P )⊥;
(d) P 2 = P and P is self-adjoint;
(e) P 2 = P and P is normal.

Proof. (a) =⇒ (b): It is clear from the definition of PM and the fact
that M⊥⊥ = M that 1 − P is the projection onto M⊥ if P is the
projection onto M .

(b) =⇒ (a): This is the same statement, applied to 1−P in place of
P .

(a) =⇒ (c): This was already observed above, see Exercise 6.3.
(c) =⇒ (a): If y ∈ R(P ), so y = Pu for some u ∈ H, then Py =

P 2u = Pu = y. On the other hand, if z ∈ R(P )⊥ = N(P ) (and here
we make use of the fact that N(P ) is a closed subspace, because P
is continuous), then Pz = 0. Now let x ∈ H be arbitrary and use
Theorem 5.8 to decompose x = y+ z, y ∈ R(P ), z ∈ R(P )⊥. Note that
R(P ) is a closed subspace because it is the orthogonal complement of
N(P ) by assumption. By our earlier observations, Px = Py+ Pz = y,
so indeed P is the projection on R(P ).

(a) =⇒ (d): Again, we already know that P 2 = P . Moreover, for
arbitrary x, y ∈ H, we have

(6.1) 〈Px, Py〉 = 〈x, Py〉 = 〈Px, y〉,
because, for example, x = Px + (1 − P )x, but (1 − P )x ⊥ Py. The
second equality in (6.1) says that P ∗ = P , as desired.
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(d) =⇒ (e) is trivial.
(e) =⇒ (c): Since P is normal, we have

‖Px‖2 = 〈Px, Px〉 = 〈P ∗Px, x〉 = 〈PP ∗x, x〉 = ‖P ∗x‖2.

In particular, this implies that N(P ) = N(P ∗), and Theorem 6.2 then
shows that N(P ) = R(P )⊥. We could finish the proof by passing to the
orthogonal complements here if we also knew that R(P ) is closed. We
will establish this by showing that R(P ) = N(1− P ) (which is closed,
being the null space of a continuous operator). Clearly, if x ∈ R(P ),
then x = Py for some y ∈ H and thus (1 − P )x = P 2y − Py = 0, so
x ∈ N(1− P ). Conversely, if x ∈ N(1− P ), then x = Px ∈ R(P ). �

For later use, we also note the following technical property of pro-
jections:

Proposition 6.6. Let P,Q be projections. Then PQ is a projection if
and only if PQ = QP . In this case, R(PQ) = R(P ) ∩R(Q).

Proof. If PQ is a projection, then it satisfies condition (d) from Theo-
rem 6.5, so PQ = (PQ)∗ = Q∗P ∗ = QP . Conversely, if we assume that
PQ = QP , then the same calculation shows that PQ is self-adjoint.
Moreover, (PQ)2 = PQPQ = PPQQ = P 2Q2 = PQ, and now Theo-
rem 6.5 shows that PQ is a projection.

To find its range, we observe that R(PQ) ⊆ R(P ), but also R(PQ) =
R(QP ) ⊆ R(Q), so R(PQ) ⊆ R(P ) ∩ R(Q). On the other hand, if
x ∈ R(P ) ∩ R(Q), then Px = Qx = x, so PQx = x and thus x ∈
R(PQ). �

On the finite-dimensional Hilbert space H = Cn, every operator
T ∈ B(Cn) (equivalently, every matrix T ∈ Cn×n) can be brought to a
relatively simple canonical form (the Jordan normal form) by a change
of basis. In fact, usually operators are diagonalizable.

Exercise 6.4. Can you establish the following precise version: The set of
diagonalizable matrices contains a dense open subset of Cn×n; here we
use the topology generated by the operator norm. (In fact, by Theorem
2.15, any other norm will give the same topology.)

The situation on infinite-dimensional Hilbert spaces is much more
complicated. We cannot hope for a normal form theory for general Hil-
bert space operators. In fact, the following much more modest question
is a famous long-standing open problem:

Does every T ∈ B(H) have a non-trivial invariant subspace?
(the invariant subspace problem)
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Here, a closed subspace M ⊆ H is called invariant if TM ⊆ M ; the
trivial invariant subspaces are {0} and H.

Exercise 6.5. (a) Show that every T ∈ Cn×n = B(Cn) has a non-trivial
invariant subspace.
(b) Show that L({T nx : n ≥ 0}) is an invariant subspace (possibly tri-
vial) for every x ∈ H.
(c) Deduce from (b) that every T ∈ B(H) on a non-separable Hilbert
space H has a non-trivial invariant subspace.

Of course, we wouldn’t really gain very much even from a positive
answer to the invariant subspace problem; this would just make sure
that every operator has some smaller part that could be considered
separately. The fact that the invariant subspace problem is universally
recognized as an exceedingly hard problem makes any attempt at a ge-
neral structure theory for Hilbert space operators completely hopeless.

We will therefore focus on normal operators, which form an especially
important subclass of Hilbert space operators. Here, we will be able to
develop a powerful theory. The fundamental result here is the spectral
theorem; we will prove this in Chapter 10, after a few detours. It is also
useful to recall from linear algebra that a normal matrix T ∈ Cn×n

can be diagonalized; in fact, this is done by changing from the original
basis to a new ONB, consisting of the eigenvectors of T .

Generally speaking, the eigenvalues and eigenvectors of a matrix take
center stage in the analysis in the finite-dimensional setting, so it seems
a good idea to try to generalize these notions. We do this as follows
(actually, we only generalize the concept of an eigenvalue here):

Definition 6.7. For T ∈ B(H), define

ρ(T ) = {z ∈ C : T − z is invertible in B(H)},
σ(T ) = C \ ρ(T ).

We call ρ(T ) the resolvent set of T and σ(T ) the spectrum of T .

Exercise 6.6. Show that σ(T ) is exactly the set of eigenvalues of T if
T ∈ B(Cn) is a matrix.

This confirms that we may hope to have made a good definition, but
perhaps the more obvious try would actually have gone as follows: Call
z ∈ C an eigenvalue of T ∈ B(H) if there exists an x ∈ H, x 6= 0, such
that Hx = zx, and introduce σp(T ) as the set of eigenvalues of T ; we
also call σp(T ) the point spectrum of T .

However, this doesn’t work very well in the infinite-dimensional set-
ting:
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Exercise 6.7. Consider the operator S ∈ `2(Z), (Sx)n = xn+1 (S as in
shift), and prove the following facts about S:
(a) S is unitary;
(b) σp(S) = ∅.

We can also obtain an example of a self-adjoint operator with no
eigenvalues from this, by letting T = S + S∗. Then T = T ∗ (obvious),
and again σp(T ) = ∅ (not obvious, and in fact you will probably need
to use a few facts about difference equations to prove this; this part of
the problem is optional).

Exercise 6.8. Show that σp ⊆ σ.

Exercise 6.9. Here’s another self-adjoint operator with no eigenvalues;
compare Exercise 6.7. Define T : L2(0, 1) → L2(0, 1) by (Tf)(x) =
xf(x).
(a) Show that T ∈ B(L2(0, 1)) and T = T ∗, and compute ‖T‖.
(b) Show that σp(T ) = ∅. Can you also show that σ(T ) = [0, 1]?

Exercise 6.10. Let s(x, y) be a sesquilinear form that is bounded in the
sense that

M ≡ sup
‖x‖=‖y‖=1

|s(x, y)| <∞.

Show that there is a unique operator T ∈ B(H) such that s(x, y) =
〈x, Ty〉. Show also that ‖T‖ = M .

Hint: Apply the Riesz Representation Theorem to the map x 7→
s(x, y), for fixed but arbitrary y ∈ H.

Exercise 6.11. Let T : H → H be a linear operator, and assume
that 〈Tx, y〉 = 〈x, Ty〉 for all x, y ∈ H. Show that T is bounded (the
Hellinger-Toeplitz Theorem).
Suggestion: Show that T is closed and apply the closed graph theorem.


