
3. Consequences of Baire’s Theorem

In this chapter, we discuss four fundamental functional analytic the-
orems that are direct descendants of Baire’s Theorem (Theorem 1.10).
All four results have a somewhat paradoxical character; the assump-
tions look too weak to give the desired conclusions, but somehow we
get these anyway.

Theorem 3.1 (Uniform boundedness principle). Let X be a Banach
space and let Y be a normed space. Assume that F ⊆ B(X, Y ) is
a family of bounded linear operators that is bounded pointwise in the
following sense: For each x ∈ X, there exists Cx ≥ 0 such that ‖Ax‖ ≤
Cx for all A ∈ F . Then F is uniformly bounded, that is, supA∈F ‖A‖ <
∞.

Proof. Let Mn = {x ∈ X : ‖Ax‖ ≤ n for all A ∈ F}. Then Mn is a
closed subset X. Indeed, we can write

Mn =
⋂
A∈F

{x ∈ X : ‖Ax‖ ≤ n},

and these sets are closed because they are the inverse images under A
of the closed ball Bn(0). Moreover, the assumption that F is pointwise
bounded says that

⋃
n∈NMn = X. Therefore, by Baire’s Theorem, at

least one of the Mn’s is not nowhere dense. Fix such an n, and let
Br(x0) be an open ball contained in Mn. In other words, we now know
that if ‖y − x0‖ < r, then ‖Ay‖ ≤ n for all A ∈ F . In particular, if
x ∈ X is arbitrary with ‖x‖ = 1, then y = x0 + (r/2)x is such a vector
and thus

‖Ax‖ =
2

r
‖A(y − x0)‖ ≤

2

r
(‖Ay‖+ ‖Ax0‖)

≤ 2

r
(n+ Cx0) ≡ D.

The constant D is independent of x, so it follows that ‖A‖ ≤ D. Since
D is also independent of A ∈ F , this is what we claimed. �

Theorem 3.2 (The open mapping theorem). Let X, Y be Banach
spaces, and assume that A ∈ B(X, Y ) is surjective (that is, R(A) = Y ).
Then A is an open map: if U ⊆ X is open, then A(U) is also open (in
Y ).

The condition defining an open map is of course similar to the cor-
responding property of continuous maps (see Proposition 1.5), but it
goes in the other direction. In particular, that means that the inverse
of an open map, if it exists, is continuous. Therefore, the open mapping
theorem has the following consequence:
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Corollary 3.3. Let X, Y be Banach spaces, and assume that A ∈
B(X, Y ) is bijective. Then A−1 ∈ B(Y,X).

Exercise 3.1. Prove the following linear algebra fact: The inverse of an
invertible linear map is linear.

Proof. By Exercise 3.1, A−1 is linear. By the open mapping theorem
and the subsequent remarks, A−1 is continuous. �

Proof of Theorem 3.2. Let U ⊆ X be an open set, and let y ∈ A(U),
so y = Ax for some x ∈ X (perhaps there are several such x, but then
we just pick one of these). We want to show that there exists an r > 0
with Br(y) ⊆ A(U). Since y ∈ A(U) was arbitrary, this will prove that
A(U) is open.

We know that Bε(x) ⊆ U for some ε > 0, so it actually suffices to
discuss the case where U = Bε(x). In fact, this can be further reduced:
it is enough to consider x, y = 0, and it then suffices to show that for
some R > 0, the set A(BR(0)) contains a ball Br(0) for some r > 0.
Indeed, if this holds, then, using the linearity of A, we will also have

A(Bε(x)) = Ax+
ε

R
A(BR(0)) ⊇ Ax+

ε

R
Br(0) = Bεr/R(Ax) = Bεr/R(y),

and this is exactly what we originally wanted to show.
Since A is surjective, we can write

Y =
⋃
n∈N

A(Bn(0)) =
⋃
n∈N

A(Bn(0)).

By Baire’s Theorem, one of the closed sets in the second union has to
contain an open ball, say Br(v) ⊆ A(Bn(0)). In other words, Br(0) ⊆
A(Bn(0))− v. Now again v = Au for some u ∈ X, so

(3.1) Br(0) ⊆ A(Bn(0))− Au = A(Bn(−u)),

and if we take N ≥ n+ ‖u‖, then BN(0) ⊇ Bn(−u), so

(3.2) Br(0) ⊆ A(BN(0)).

Except for the closure, this is what we wanted to show.

Exercise 3.2. In (3.1), we used the following fact: If M ⊆ X and x ∈ X,
then M +x = M + x. Prove this and also the analogous property that
cM = cM (c ∈ C).

We will now finish the proof by showing that A(BN(0)) ⊆ A(B2N(0)).

So let y ∈ A(BN) (since all balls will be centered at 0, we will use this
simplified notation).
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We can find an x1 ∈ BN with ‖y − Ax1‖ < r/2. Since, by (3.2) and
Exercise 3.2,

Br/2 =
1

2
Br ⊆

1

2
A(BN) = A(BN/2),

we then also see that y − Ax1 ∈ A(BN/2). Thus there exists an x2 ∈
BN/2 with ‖y−Ax1−Ax2‖ < 2−2r. We continue in this way and obtain
a sequence xn with the following properties:

(3.3) xn ∈ B2−n+1N ,

∥∥∥∥∥y −
n∑
j=1

Axj

∥∥∥∥∥ < 2−nr

This shows, first of all, that the series
∑∞

n=1 xn is absolutely convergent.
Indeed,

∑∞
n=1 ‖xn‖ < 2N

∑∞
n=1 2−n = 2N < ∞. By Exercise 2.22,

x :=
∑∞

n=1 xn exists. Moreover, by the calculation just carried out,
‖x‖ ≤

∑
‖xn‖ < 2N , so x ∈ B2N . Since A is continuous, we have

Ax = limn→∞
∑n

j=1Axj, and the second property from (3.3) now shows

that Ax = y. In other words, y ∈ A(B2N), as desired. �

The graph of an operator A : X → Y is defined as the set G(A) =
{(x,Ax) : x ∈ X}. We can think of G(A) as a subset of the Banach
space X⊕Y that was introduced in Chapter 2; see especially Theorem
2.17.

Exercise 3.3. Show that G(A) is a (linear) subspace of X ⊕ Y if A is a
linear operator.

Definition 3.4. Let X, Y be Banach spaces. A linear operator A :
X → Y is called closed if G(A) is closed in X ⊕ Y .

If we recall how the norm on X ⊕ Y was defined, we see that
(xn, yn) → (x, y) in X ⊕ Y precisely if xn → x and yn → y. There-
fore, using sequences, we can characterize closed operators as follows:
A : X → Y is closed precisely if the following holds: If xn → x and
Axn → y, then y = Ax.

On the other hand, A is continuous precisely if xn → x implies
that Axn → y and y = Ax (formulated in a slightly roundabout way
here to facilitate the comparison). This looks clearly stronger than the
condition from above: what was part of the hypothesis has become
part of the conclusion. In particular, continuous operators are always
closed. When viewed against this background, the following result is
quite stunning.

Theorem 3.5 (The closed graph theorem). Let X, Y be Banach spaces
and assume that A : X → Y is linear and closed. Then A ∈ B(X, Y ).
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Proof. We introduce the projections P1 : X⊕Y → X, P2 : X⊕Y → Y ,
P1(x, y) = x, P2(x, y) = y. It is clear that P1, P2 are linear and
continuous. By hypothesis and Exercise 3.3, G(A) is a closed linear
subspace of X ⊕ Y . By Proposition 2.7, it is therefore a Banach space
itself (with the same norm as X ⊕ Y ). Now P1, restricted to G(A) is
a bijection onto X. Corollary 3.3 shows that the inverse P−11 : X →
G(A), P−11 x = (x,Ax) is continuous. It follows that A = P2P

−1
1 is a

composition of continuous maps and thus continuous itself. �

Exercise 3.4. Let X, Y be Banach spaces and An, A ∈ B(X, Y ). We
say that An converges (to A) strongly if Anx → Ax for all x ∈ X. In

this case, we write An
s−→ A. Prove that strong convergence has the

following properties:
(a) ‖An − A‖ → 0 =⇒ An

s−→ A;
(b) The converse of part (a) does not hold;

(c) If An
s−→ A, then supn ‖An‖ < ∞ (Hint: use the uniform bound-

edness principle).

Exercise 3.5. Suppose that for some measure space (X,µ) and expo-
nents p, q, we have Lp(X,µ) ⊆ Lq(X,µ). Show that then there exists
a constant C > 0 such that ‖f‖q ≤ C‖f‖p for all f ∈ Lp(X,µ).

Suggested strategy: If Lp ⊆ Lq, we can define the inclusion map
I : Lp → Lq, If = f . Use Corollary 2.9 to show that this map is
closed, and then apply the closed graph theorem.


