14. Compact operators

Definition 14.1. A linear operator $T: H \rightarrow H$ (defined everywhere) is called compact if $\overline{T(B)} \subseteq H$ is a compact set; here, $B=B_{1}(0)=$ $\{x \in H:\|x\|<1\}$. We denote the set of compact operators on H by $K(H)$.

Compact operators $T: X \rightarrow Y$ between Banach spaces can be defined in the same way, but I have specialized right away to the case of most interest to us.
Exercise 14.1. Let $T \in K(H)$. Show that $\overline{T(B)}$ is compact for any bounded set $B \subseteq X$.

Compact sets are bounded, so compact operators are bounded operators: $K(H) \subseteq B(H)$.

Proposition 14.2. $T: H \rightarrow H$ is compact if and only if every bounded sequence $x_{n} \in H$ has a subsequence $x_{n_{j}}$ for which $T x_{n_{j}}$ converges.
Exercise 14.2. Prove the Proposition.
Theorem 14.3. Suppose that $S, T \in K(H), A \in B(H)$, and $c \in \mathbb{C}$. Then $S+T, c T, A T, T A \in K(H)$.

Put differently, this says that $K(H) \subseteq B(H)$ is a two-sided ideal in the C^{*}-algebra $B(H)$ ("two-sided" refers to the fact that we may multiply by $A \in B(H)$ from either side), and Theorem 14.4 below shows that $K(H)$ is also closed. Later, in Theorem 14.17, we will see that the converse of this statement also holds: $K(H)$ is the only closed two-sided ideal $\neq 0, B(H)$ of this algebra.
Proof. We use the criterion from Proposition 14.2. Given a sequence $x_{n} \in H,\left\|x_{n}\right\| \leq C$, pick a subsequence x_{n}^{\prime} for which $S x_{n}^{\prime}$ converges and then a sub-subsequence $x_{n}^{\prime \prime}$ for which $T x_{n}^{\prime \prime}$ converges, too. Then $(S+T) x_{n}^{\prime \prime}, c T x_{n}^{\prime \prime}$, and $A T x_{n}^{\prime \prime}$ all converge. Furthermore, since A is bounded, $A x_{n}$ is just another bounded sequence, so $T\left(A x_{n}\right)$ can also be made convergent by passing to a subsequence.
Theorem 14.4. $K(H)$ is a closed subset of $B(H)$.
Proof. Suppose that $T_{n} \in K(H), T \in B(H),\left\|T_{n}-T\right\| \rightarrow 0$, and let $x_{n} \in H$ be a bounded sequence, with $\left\|x_{n}\right\| \leq 1$, say. We must show that $T x_{n}$ has a convergent subsequence. For fixed m, we can of course make $T_{m} x_{n}$ convergent as $n \rightarrow \infty$ by passing to a suitable subsequence, and we can do better than this: a diagonal process lets us find a subsequence x_{n}^{\prime} with the property that $\lim _{n \rightarrow \infty} T_{m} x_{n}^{\prime}$ exists for all m.

Now if $\epsilon>0$ is given, fix an $n \in \mathbb{N}$ with $\left\|T_{n}-T\right\|<\epsilon$. Then take $N \in \mathbb{N}$ so large that (for this $n)\left\|T_{n}\left(x_{j}^{\prime}-x_{k}^{\prime}\right)\right\|<\epsilon$ for all $j, k \geq N$. For such j, k, we then also have

$$
\begin{aligned}
\left\|T\left(x_{j}^{\prime}-x_{k}^{\prime}\right)\right\| & \leq\left\|T_{n}\left(x_{j}^{\prime}-x_{k}^{\prime}\right)\right\|+\left\|T_{n}-T\right\|\left\|x_{j}^{\prime}-x_{k}^{\prime}\right\| \\
& <\epsilon+2\left\|T_{n}-T\right\|<3 \epsilon,
\end{aligned}
$$

so $T x_{n}^{\prime}$ is a Cauchy sequence and thus convergent.
We call $T \in B(H)$ a finite rank operator if $\operatorname{dim} R(T)<\infty$. In this case, if $\left\|x_{n}\right\| \leq C$, then $T x_{n}$ is a bounded sequence from the finite-dimensional space $R(T) \cong \mathbb{C}^{N}$, so we will be able to extract a convergent subsequence (this is the Bolzano-Weierstraß theorem). Recall also that all norms on a finite-dimensional space are equivalent, so it suffices to identify $R(T)$ with \mathbb{C}^{N} as a vector space and then automatically the induced topology must be the usual topology on \mathbb{C}^{N}.

So every finite rank operator is compact. In particular, $B\left(\mathbb{C}^{n}\right)=$ $K\left(\mathbb{C}^{n}\right)$. Further examples of compact operators are provided by the following Exercise.

Exercise 14.3. Suppose that $t_{n} \rightarrow 0$, and let $T: \ell^{2} \rightarrow \ell^{2}$ be the operator of multiplication by t_{n}. More precisely, $(T x)_{n}=t_{n} x_{n}$. Show that T is compact.
Suggestion: Consider the finite rank truncations T_{N} corresponding to the truncated sequence $t_{n}^{(N)}$ and use Theorem 14.4; here, $t_{n}^{(N)}=t_{n}$ if $n \leq N$ and $t_{n}^{(N)}=0$ if $n>N$.

Theorem 14.5. Let $T \in B(H)$. Then the following are equivalent: (a) $T \in K(H)$; (b) $T^{*} \in K(H)$; (c) $T^{*} T \in K(H)$.

Proof. By Theorem 14.3, (a) or (b) both imply (c).
Conversely, assume now that (c) holds, and let $x_{n} \in H,\left\|x_{n}\right\| \leq C$. Then $T^{*} T x_{n}$ converges on a suitable subsequence, which, for convenience, we will again denote by x_{n}. The following calculation shows that $T x_{n}$ converges on the same subsequence, and this will establish (a).

$$
\begin{aligned}
\left\|T\left(x_{m}-x_{n}\right)\right\|^{2} & =\left\langle T\left(x_{m}-x_{n}\right), T\left(x_{m}-x_{n}\right)\right\rangle \\
& =\left\langle x_{m}-x_{n}, T^{*} T\left(x_{m}-x_{n}\right)\right\rangle \\
& \leq\left\|x_{m}-x_{n}\right\|\left\|T^{*} T\left(x_{m}-x_{n}\right)\right\| \leq 2 C\left\|T^{*} T\left(x_{m}-x_{n}\right)\right\|
\end{aligned}
$$

Finally, if (a) holds, then also $T T^{*}=T^{* *} T^{*} \in K(H)$, by Theorem 14.3 again, and now the argument from the preceding paragraph shows that $T^{*} \in K(H)$ also.

Exercise 14.4. Let $P \in B(H)$ be the projection onto the subspace $M \subseteq H$. Show that P is compact if and only if $\operatorname{dim} M<\infty$.

Theorem 14.6. Let $T: H \rightarrow H$ be a linear operator (with $D(T)=H$).
(a) The following statements are equivalent:
(i) $T \in B(H)$;
(ii) $x_{n} \rightarrow 0 \Longrightarrow T x_{n} \rightarrow 0$;
(iii) $x_{n} \xrightarrow{w} 0 \Longrightarrow T x_{n} \xrightarrow{w} 0$;
(iv) $x_{n} \rightarrow 0 \Longrightarrow T x_{n} \xrightarrow{w} 0$
(b) The following statements are equivalent:
(i) $T \in K(H)$;
(ii) $x_{n} \xrightarrow{w} 0 \Longrightarrow T x_{n} \rightarrow 0$

Here, we of course need to remember that $x_{n} \xrightarrow{w} x$ if and only if $\left\langle y, x_{n}\right\rangle \rightarrow\langle y, x\rangle$ for all $y \in H$.
Exercise 14.5. Let $x_{n} \in H$ and suppose that $\lim _{n \rightarrow \infty}\left\langle y, x_{n}\right\rangle$ exists for every $y \in H$. Show that then x_{n} is bounded. Hint: Apply the uniform boundedness principle to the maps $F_{n}(y)=\left\langle x_{n}, y\right\rangle$.

Note that every weakly convergent sequence x_{n} satisfies the assumption from this Exercise; conversely, as we will in fact show below, at the end of the proof of Lemma 14.7, such a sequence x_{n} is weakly convergent, so we could have assumed this instead.

In the proof of Theorem 14.6, we will also need the following lemma, which is of considerable independent interest.

Lemma 14.7. Every bounded sequence $x_{n} \in H$ has a weakly convergent subsequence.

Proof. For every fixed m, the sequence $\left(\left\langle x_{m}, x_{n}\right\rangle\right)_{n}$ is a bounded sequence of complex numbers, so it has a convergent subsequence by the Bolzano-Weierstraß Theorem. Again, a diagonal process lets us in fact find a subsequence x_{n}^{\prime} for which $\left\langle x_{m}, x_{n}^{\prime}\right\rangle$ converges, as $n \rightarrow \infty$, for all m. The (anti-)linearity of the scalar product now implies that $\lim \left\langle y, x_{n}^{\prime}\right\rangle$ exists for all $y \in L\left(x_{m}\right)$.

Exercise 14.6. Show that this limit exists for all $y \in \overline{L\left(x_{m}\right)}$. Suggestion: Show that the scalar products form a Cauchy sequence.

Finally, if $w \in H$ is arbitrary, write $w=y+z$ with $y \in M=\overline{L\left(x_{m}\right)}$ and $z \in M^{\perp}$. Then $\left\langle w, x_{n}^{\prime}\right\rangle=\left\langle y, x_{n}^{\prime}\right\rangle$, so this sequence converges, too.

To show that x_{n}^{\prime} is weakly convergent, we still need to produce an $x \in H$ such that $\lim \left\langle w, x_{n}^{\prime}\right\rangle=\langle w, x\rangle$ for all $w \in H$. To do this, consider the linear functional $F(w)=\lim \left\langle x_{n}^{\prime}, w\right\rangle$. It is bounded since
$|F(w)| \leq \lim \sup \left\|x_{n}^{\prime}\right\|\|w\| \leq C\|w\|$. Therefore, the Riesz Representation Theorem shows that $F(w)=\langle x, w\rangle$ for some $x \in H$, as desired.

Proof of Theorem 14.6. (a) (i) \Longrightarrow (ii): This is obvious, because (ii) is just the sequence version of continuity at $x=0$, and so (i) and (ii) are in fact equivalent.
(ii) \Longrightarrow (iii): As just observed, $T \in B(H)$. If $x_{n} \xrightarrow{w} 0$, then also

$$
\left\langle y, T x_{n}\right\rangle=\left\langle T^{*} y, x_{n}\right\rangle \rightarrow 0
$$

for all $y \in H$, so $T x_{n} \xrightarrow{w} 0$.
(iii) \Longrightarrow (iv) is trivial.
(iv) \Longrightarrow (i): Suppose that $T \notin B(H)$. Then we can find $x_{n} \in H$, $\left\|x_{n}\right\|=1$, with $\left\|T x_{n}\right\| \geq n^{2}$. Let $y_{n}=(1 / n) x_{n}$. Then $y_{n} \rightarrow 0$, but $\left\|T y_{n}\right\| \geq n$, so, by Exercise 14.5 , the sequence $T y_{n}$ cannot be weakly convergent.
(b) (i) \Longrightarrow (ii): Let $x_{n} \in H, x_{n} \xrightarrow{w} 0$. Then x_{n} is bounded (Exercise 14.5 again), so there exists a subsequence x_{n}^{\prime} for which $T x_{n}^{\prime}$ converges, say $T x_{n}^{\prime} \rightarrow y$. In particular, $T x_{n}^{\prime} \xrightarrow{w} y$, and now part (a), condition (iii) shows that we must have $y=0$ here. This whole argument has in fact shown that every subsequence x_{n}^{\prime} of x_{n} has a sub-subsequence $x_{n}^{\prime \prime}$ with $T x_{n}^{\prime \prime} \rightarrow 0$. It follows that $T x_{n} \rightarrow 0$, without the need of passing to a subsequence.
(ii) \Longrightarrow (i): Let x_{n} be a bounded sequence. By Lemma 14.7, we can extract a weakly convergent subsequence, which we denote by x_{n} also. So $x_{n} \xrightarrow{w} x$, and thus $x_{n}-x \xrightarrow{w} 0$. By hypothesis, $T\left(x_{n}-x\right) \rightarrow 0$, so indeed $T x_{n}$ converges (to $T x$).

We now discuss the spectral theory of compact operators. We first deal with compact normal operators. The following two results give a complete spectral theoretic characterization of these.

Theorem 14.8. Let $T \in B(H)$ be a compact, normal operator. Then $\sigma(T)$ is countable. Write $\sigma(T) \backslash\{0\}=\left\{z_{n}\right\}$. Then each z_{n} is an eigenvalue of T of finite multiplicity: $1 \leq \operatorname{dim} N\left(T-z_{n}\right)<\infty$. Moreover, $z_{n} \rightarrow 0$ if $\left\{z_{n}\right\}$ is infinite.

If P_{n} denotes the projection onto $N\left(T-z_{n}\right)$, then

$$
\begin{equation*}
T=\sum z_{n} P_{n} \tag{14.1}
\end{equation*}
$$

This series converges in $B(H)$, for an arbitrary arrangement of the z_{n}. Finally, if $\operatorname{dim} H=\infty$, then $0 \in \sigma(T)$.

Proof. Denote the open disk about 0 of radius r by $D_{r}=\{z \in \mathbb{C}$:
$|z|<r\}$, and let $P=E\left(D_{r}^{c}\right)$, where E is the spectral resolution of T.
Let $M=R(P)$, which is a reducing subspace for T by Exercise 10.22 .

I claim that $\operatorname{dim} M<\infty$. Indeed, if this were wrong, we could find a sequence $x_{n} \in M,\left\|x_{n}\right\|=1, x_{n} \xrightarrow{w} 0$ (pick any ONS in M). Theorem 14.6(b) then shows that $T x_{n} \rightarrow 0$. This, however, is impossible because the functional calculus shows that

$$
\left\|T x_{n}\right\|^{2}=\int_{\mathbb{C}}|z|^{2} d\left\|E(z) x_{n}\right\|^{2} \geq r^{2}>0
$$

Now since M is reducing, we can decompose $T=T_{M} \oplus T_{M^{\perp}}$, and $M^{\perp}=R\left(E\left(D_{r}\right)\right)$, so $\left\|T_{M^{\perp}}\right\| \leq r$, and thus $T_{M^{\perp}}-z$ is definitely invertible in $B\left(M^{\perp}\right)$ if $|z|>r$. So such a z will be in $\rho(T)$, unless $z \in \sigma\left(T_{M}\right)$, but T_{M} is an operator on the finite-dimensional space M, so its spectrum consists of eigenvalues only, and there are only finitely many of these. Conversely, it is clear that every eigenvalue of T_{M} is an eigenvalue of T also, so we have shown the following: $\sigma(T) \cap D_{r}^{c}$ is finite for every $r>0$ and contains only eigenvalues of T. Moreover, these are of finite multiplicity because $N(T-z)=E(\{z\}) \subseteq E\left(D_{r}^{c}\right)=M$.

It now follows that $\sigma(T)$ is countable, and we also obtain the statements about the sequence z_{n}. If $\operatorname{dim} H=\infty$, then either $E(\{0\}) \neq 0$ or the sequence z_{n} is infinite and thus converges to 0 . In both cases, $0 \in \sigma(T)$.

It remains to establish (14.1). Notice that $P_{n}=E\left(\left\{z_{n}\right\}\right)$; in particular, the P_{n} have mutually orthogonal ranges. Let's first verify that (14.1) converges in $B(H)$. More precisely, we will prove that the partial sums $S_{N}=\sum_{|n| \leq N} z_{n} P_{n}$ form a Cauchy sequence. Let $x \in H$, and consider, for $N^{\prime}>N$,

$$
\begin{aligned}
\left\|\left(S_{N^{\prime}}-S_{N}\right) x\right\|^{2} & =\sum_{n=N+1}^{N^{\prime}}\left|z_{n}\right|^{2}\left\|P_{n} x\right\|^{2} \leq\left(\sup _{n>N}\left|z_{n}\right|^{2}\right) \cdot \sum_{n=N+1}^{N^{\prime}}\left\|P_{n} x\right\|^{2} \\
& \leq\left(\sup _{n>N}\left|z_{n}\right|^{2}\right) \cdot\|x\|^{2} .
\end{aligned}
$$

This implies that

$$
\left\|S_{N^{\prime}}-S_{N}\right\| \leq \sup _{n>N}\left|z_{n}\right|
$$

and this supremum goes to zero as $N \rightarrow \infty$, as desired.
Now $S_{N}=\int \chi_{\left\{z_{1}, \ldots, z_{N}\right\}}(z) z d E(z)$ (the integrand is a simple function, taking only finitely many values). Since E is supported by $\sigma(T)$ and $T=\int z d E(z)$, functional calculus shows that

$$
\left\|S_{N}-T\right\|=\sup _{n>N}\left|z_{n}\right| \rightarrow 0
$$

as claimed.

So normal compact operators have representations of the type (14.1). It is also true that, conversely, if we are given data z_{n} and P_{n} with the properties stated in Theorem 14.8, then we can use (14.1) to define a normal compact operator T. In other words, (14.1) for sequences $z_{n} \rightarrow 0$ and mutually orthogonal finite-dimensional projections P_{n} lists exactly all normal compact operators.

To formulate this converse, we slightly change the notation. We let $\langle x, \cdot\rangle x$ denote the operator that maps $y \mapsto\langle x, y\rangle x$.

Exercise 14.7. Show that $\langle x, \cdot\rangle x=\|x\|^{2} P_{L(x)}$. Also, show that if $\left\{x_{1}, \ldots, x_{N}\right\}$ is an ONB of the (finite-dimensional) subspace M, then

$$
P_{M}=\sum_{n=1}^{N}\left\langle x_{n}, \cdot\right\rangle x_{n} .
$$

Theorem 14.9. Let $\left\{x_{n}\right\}$ be an $O N S$, and let $z_{n} \in \mathbb{C}, z_{n} \neq 0, z_{n} \rightarrow 0$ (if the sequence is infinite). Then the series

$$
\begin{equation*}
T=\sum z_{n}\left\langle x_{n}, \cdot\right\rangle x_{n} \tag{14.2}
\end{equation*}
$$

converges in $B(H)$ (if infinite) to a compact normal operator T. We have $\sigma(T) \backslash\{0\}=\sigma_{p}(T) \backslash\{0\}=\left\{z_{n}\right\}$, and $T x_{n}=z_{n} x_{n}$.

Note that Exercise 14.7 guarantees that the series from (14.1) are of this form; if $\operatorname{dim} R\left(P_{n}\right)>1$, then we need to pick an ONB of this space and repeat the corresponding eigenvalue z_{n} that number of times.

Proof. By Exercise 14.7, the operators $\left\langle x_{n}, \cdot\right\rangle x_{n}$ are projections onto the mutually orthogonal subspaces $L\left(x_{n}\right)$, so convergence of the series in $B(H)$ follows as in the previous proof. For each fixed N, the operator $\sum_{n=1}^{N} z_{n}\left\langle x_{n}, \cdot\right\rangle x_{n}$ is of finite rank, thus compact, and hence T is compact by Theorem 14.4.

To prove that T is normal, we temporarily change our notation again and write $\left\langle x_{n}, \cdot\right\rangle x_{n}=P_{n}$. We compute

$$
\begin{aligned}
T T^{*} & =\lim _{N \rightarrow \infty} \sum_{m=1}^{N} z_{m} P_{m} \sum_{n=1}^{N} \overline{z_{n}} P_{n}=\lim _{N \rightarrow \infty} \sum_{n=1}^{N}\left|z_{n}\right|^{2} P_{n} \\
& =\lim _{N \rightarrow \infty} \sum_{n=1}^{N} \overline{z_{n}} P_{n} \sum_{m=1}^{N} z_{m} P_{m}=T^{*} T
\end{aligned}
$$

so T is normal.
It is also clear that $T x_{n}=z_{n} x_{n}$, and since T is compact, any other non-zero point from the spectrum would have to be an eigenvalue, too, so the following Exercise finishes the proof.

Exercise 14.8. Show that if $z \notin\left\{z_{n}\right\} \cup\{0\}$, then $T x=z x$, with T given by (14.2), has no solution $x \neq 0$.

We now move on to arbitrary compact operators $T \in B(H)$, not necessarily normal. Actually, we are going to start with some introductory material that applies to arbitrary bounded operators $T \in B(H)$ and is of independent interest in this generality. We will consider $T^{*} T$, and this is a positive operator by Theorem 9.15.

Exercise 14.9. Give an easier proof of this statement $\left(T^{*} T \geq 0\right.$ if $T \in$ $B(H))$ that is based on Theorem 10.13.

By Theorem 10.14, $T^{*} T$ has a unique positive square root, which we will denote by $|T|:=\left(T^{*} T\right)^{1 / 2}$.

Exercise 14.10. Show that if T is normal, then this definition of $|T|$ coincides with the one obtained from the functional calculus: we have $|T|=f(T)$, with $f(z)=|z|$. In other words, show that

$$
|T|=\int_{\mathbb{C}}|z| d E(z)
$$

and here E is the spectral resolution of T.
This operator $|T|$ has the important property that

$$
\begin{equation*}
\||T| x\|=\|T x\| \tag{14.3}
\end{equation*}
$$

for all $x \in H$. We see this from the calculation

$$
\left.\||T| x\|^{2}=\langle | T|x,|T| x\rangle=\left.\langle x,| T\right|^{2} x\right\rangle=\left\langle x, T^{*} T x\right\rangle=\langle T x, T x\rangle=\|T x\|^{2} .
$$

Exercise 14.11. Compute $|T|$ for

$$
T=\left(\begin{array}{cc}
0 & -2 \\
0 & 0
\end{array}\right) \quad \text { and } \quad T=\left(\begin{array}{cc}
1 & 1 \\
\sqrt{2} & -\sqrt{2}
\end{array}\right) .
$$

Theorem 14.10. Let $T \in B(H)$. Then there is a unique unitary map $V: \overline{R(|T|)} \rightarrow \overline{R(T)}$ such that $T=V|T|$.

This representation $T=V|T|$ is called the polar decomposition of T. This terminology emphasizes the analogy to the polar representation of complex numbers $z=e^{i \varphi}|z|$.

We can of course also define V on all of H here. More specifically, we can set $W x=V x$ for $x \in \overline{R(|T|)}$ and $W x=0$ for $x \in R(|T|)^{\perp}$, and we still have $T=W|T|$, since obviously only the values of W on $R(|T|)$ matter here. Such a $W \in B(H)$ that maps a subspace $M \subseteq H$ isometrically and annihilates M^{\perp} is called a partial isometry.

Proof. To construct V, define $V_{0}: R(|T|) \rightarrow R(T)$ by $V_{0}(|T| x)=T x$. This is indeed well defined because if $|T| x=|T| y$, then $|T|(x-y)=0$, so, by (14.3), $T(x-y)=0$ as well, so $T x=T y$. Moreover, (14.3) also shows that V_{0} is isometric. In particular, V_{0} is continuous, and thus there is a unique isometric extension to $\overline{R(|T|)}$. Since $R\left(V_{0}\right)=R(T)$ and isometries have closed ranges, it follows that $R(V)=\overline{R(T)}$. By the construction of V_{0}, we have the identity $V_{0}|T|=T$, so $V|T|=T$ (note that $|T| x \in R(|T|)$ for all x, so as far as this identity is concerned, it doesn't matter if or how we extend V_{0}).

Finally, if also $W|T|=T$, then the restriction of W to $R(|T|)$ must agree with V_{0}, and there is only one continuous extension to the closure, so $W=V$ and V is unique.

Exercise 14.12. (a) Show that every $T \in \mathbb{C}^{n \times n}$ has a polar decomposition $T=U|T|$ with a unitary $U \in \mathbb{C}^{n \times n}$.
(b) Show that the result of part (a) does not hold on infinite-dimensional Hilbert spaces. Suggestion: Consider $T \in B\left(\ell^{2}\right),(T x)_{n}=x_{n-1}(n \geq$ 2), $(T x)_{1}=0$.

Theorem 14.11. If $T \in K(H)$, then also $|T| \in K(H)$.
Proof. We have $|T| \in B(H),|T|^{*}=|T|$, so $|T|^{*}|T|=|T|^{2}=T^{*} T \in$ $K(H)$ by Theorem 14.5, and this result then also shows that $|T| \in$ $K(H)$.

To obtain series representations for arbitrary compact operators, we introduce additional data. Let $s_{1}(T) \geq s_{2}(T) \geq s_{3}(T) \geq \ldots>0$ be the non-zero eigenvalues of $|T|$, repeated according to their (finite) multiplicities. The $s_{n}(T)$ are called the singular values of T. If the sequence of singular values is infinite, then $s_{n}(T) \rightarrow 0$.

Theorem 14.12. Let $T \in K(H)$. Then $s_{n}(T)=s_{n}\left(T^{*}\right)=s_{n}(|T|)=$ $s_{n}\left(\left|T^{*}\right|\right)$. Moreover, there exist ONSs $\left\{x_{n}\right\},\left\{y_{n}\right\}$, consisting of eigenvectors of $|T|$ and $\left|T^{*}\right|$, respectively (so $|T| x_{n}=s_{n} x_{n},\left|T^{*}\right| y_{n}=s_{n} y_{n}$), such that

$$
\begin{aligned}
|T| & =\sum s_{n}\left\langle x_{n}, \cdot\right\rangle x_{n}, & \left|T^{*}\right| & =\sum s_{n}\left\langle y_{n}, \cdot\right\rangle y_{n} \\
T & =\sum s_{n}\left\langle x_{n}, \cdot\right\rangle y_{n}, & T^{*} & =\sum s_{n}\left\langle y_{n}, \cdot\right\rangle x_{n} .
\end{aligned}
$$

These sums converge in $B(H)$ (if they are infinite).
Proof. We see as in the proof of Theorem 14.8 that these series converge in $B(H)$ if $\left\{x_{n}\right\},\left\{y_{n}\right\}$ are (arbitrary) ONSs. From this theorem, we also know that $|T|$ can indeed be written in this way, if we interpret
$s_{n}=s_{n}(T)$ and $|T| x_{n}=s_{n} x_{n}$. Also, from the definition of the singular values, it is already clear that $s_{n}(T)=s_{n}(|T|)$ and $s_{n}\left(T^{*}\right)=s_{n}\left(\left|T^{*}\right|\right)$.

With this choice of x_{n} in place (so $|T| x_{n}=s_{n} x_{n}$), Theorem 14.10 shows that

$$
T x=V|T| x=V \sum s_{n}\left\langle x_{n}, x\right\rangle x_{n}=\sum s_{n}\left\langle x_{n}, x\right\rangle y_{n}
$$

with $y_{n}=V x_{n}$. Since x_{n} is an ONS from $R(|T|)$ and V is unitary on this space, y_{n} is an ONS, too. Moreover, for arbitrary $x, y \in H$, we have

$$
\begin{aligned}
\left\langle x, T^{*} y\right\rangle & =\langle T x, y\rangle=\sum s_{n} \overline{\left\langle x_{n}, x\right\rangle}\left\langle y_{n}, y\right\rangle=\sum s_{n}\left\langle x, x_{n}\right\rangle\left\langle y_{n}, y\right\rangle \\
& =\left\langle x, \sum s_{n}\left\langle y_{n}, y\right\rangle x_{n}\right\rangle .
\end{aligned}
$$

This establishes the formula for T^{*}. We must still show that the y_{n} 's are eigenvectors of $\left|T^{*}\right|$. A similar calculation reveals that

$$
\begin{aligned}
T T^{*} y & =T\left(\sum s_{n}\left\langle y_{n}, y\right\rangle x_{n}\right)=\sum_{m, n} s_{m} s_{n}\left\langle y_{n}, y\right\rangle\left\langle x_{m}, x_{n}\right\rangle y_{m} \\
& =\sum s_{n}^{2}\left\langle y_{n}, y\right\rangle y_{n} .
\end{aligned}
$$

This says that $\left|T^{*}\right|=\sum s_{n}\left\langle y_{n}, \cdot\right\rangle y_{n}$, and this formula clarifies everything: First of all, the $s_{n}=s_{n}(T)$ are indeed the eigenvalues of $\left|T^{*}\right|$, so $s_{n}(T)=s_{n}\left(T^{*}\right)$. Moreover, we also see that the y_{n} are eigenvectors corresponding to these eigenvalues, and we obtain the asserted formula for $\left|T^{*}\right|$.

Corollary 14.13. Let $T \in B(H)$. Then T is compact if and only if there are finite rank operators $T_{n} \in B(H)$ such that $\left\|T_{n}-T\right\| \rightarrow 0$.

Proof. Finite rank operators are compact, so one direction follows from Theorem 14.4. Conversely, if T is compact, then $T=\sum s_{n}\left\langle x_{n}, \cdot\right\rangle y_{n}$, and the partial sums $T_{N}=\sum_{n=1}^{N} s_{n}\left\langle x_{n}, \cdot\right\rangle y_{n}$ form a sequence of finite rank operators that converges to T in operator norm.

Exercise 14.13. Let $\left\{x_{n}\right\},\left\{y_{n}\right\}$ be ONSs, and let $\sigma_{n}>0$ be a decreasing sequence with $\sigma_{n} \rightarrow 0$ (if the sequence is infinite). Show that the series

$$
T=\sum_{n} \sigma_{n}\left\langle x_{n}, \cdot\right\rangle y_{n}
$$

converges in $B(H)$ (if infinite) and defines a compact operator $T \in$ $K(H)$ with singular values $s_{n}(T)=\sigma_{n}$.

The singular values can be used to introduce subclasses of compact operators. More precisely, for $1 \leq p<\infty$, let

$$
K^{p}(H)=\left\{T \in K(H): s_{n}(T) \in \ell^{p}\right\}
$$

We could also take $p=\infty$ here, but then $K^{\infty}(H)=K(H)$, all compact operators. The spaces K^{p} are sometimes called von Neumann-Schatten classes or trace ideals. Of particular interest are $K^{2}(H)$, the HilbertSchmidt operators, and $K^{1}(H)$, the trace class operators.

For $T \in K^{p}(H)$, we introduce $\|T\|_{p}=\left\|s_{n}(T)\right\|_{\ell^{p}}=\left(\sum s_{n}(T)^{p}\right)^{1 / p}$. This indeed defines a norm on $K^{p}(H)$, and in fact $\left(K^{p}(H),\|\cdot\|_{p}\right)$ is a Banach space, but these statements are not obvious. In fact, it is not even clear right away if K^{p} is a vector space. We will not prove these general statements here, but see Exercise 14.15 below for the case $p=2$.

Exercise 14.14. Prove that if T is compact, then $\|T\|=s_{1}(T)$. So $\|T\|_{\infty}=\|T\|\left(=\|T\|_{B(H)}\right)$ and $\|T\| \leq\|T\|_{p}$ for all $1 \leq p<\infty$.

Theorem 14.14. Let $T \in K(H)$, and let $\left\{e_{\alpha}\right\}$ be an ONB of H. Then $T \in K^{2}(H)$ if and only if $\sum\left\|T e_{\alpha}\right\|^{2}<\infty$. In this case, $\|T\|_{2}=$ $\left(\sum\left\|T e_{\alpha}\right\|^{2}\right)^{1 / 2}$ (for any ONB).

Proof. We first show that (for any $T \in K(H)$, Hilbert-Schmidt or not), $\sum\left\|T e_{\alpha}\right\|^{2}$ is independent of the choice of ONB $\left\{e_{\alpha}\right\}$ (with the understanding that the sum may equal infinity). Consider a second ONB $\left\{f_{\beta}\right\}$. Then, by Parseval's identity,

$$
\begin{aligned}
\sum_{\beta}\left\|T^{*} f_{\beta}\right\|^{2} & =\sum_{\beta} \sum_{\alpha}\left|\left\langle e_{\alpha}, T^{*} f_{\beta}\right\rangle\right|^{2}=\sum_{\alpha} \sum_{\beta}\left|\left\langle e_{\alpha}, T^{*} f_{\beta}\right\rangle\right|^{2} \\
& =\sum_{\alpha} \sum_{\beta}\left|\left\langle T e_{\alpha}, f_{\beta}\right\rangle\right|^{2}=\sum_{\alpha}\left\|T e_{\alpha}\right\|^{2}
\end{aligned}
$$

The change of the order of summation in the second step is justified when there are only countably many non-zero summands because the terms are non-negative, or if there are uncountably many terms, then both sides equal infinity. This whole calculation works for any two ONBs, so it also shows that $\sum\left\|T e_{\alpha}\right\|^{2}=\sum\left\|T g_{\gamma}\right\|^{2}$, if $\left\{g_{\gamma}\right\}$ is another ONB.

We now take as our ONB $\left\{e_{\alpha}\right\}$ eigenvectors of $|T|$, so $|T| e_{n}=s_{n} e_{n}$, supplemented by an ONB of $N(|T|)$ if necessary. Then

$$
\sum\left\|T e_{\alpha}\right\|^{2}=\sum\left\||T| e_{\alpha}\right\|^{2}=\sum s_{n}^{2}=\|T\|_{2}^{2}
$$

and this implies everything that was stated in the theorem.
Exercise 14.15. Prove that $K^{2}(H)$ is a vector space and that $\|\cdot\|_{2}$ defines a norm on $K^{2}(H)$.

Exercise 14.16. Show that $A \in K^{p}\left(\mathbb{C}^{n}\right)$ for every matrix $A \in \mathbb{C}^{n \times n}$, for any $p \geq 1$. Then show that

$$
\|A\|_{2}^{2}=\sum_{j, k=1}^{n}\left|a_{j k}\right|^{2} .
$$

Theorem 14.15. Let $T \in B(H)$. Then $T \in K^{1}(H)$ if and only if $T=A B$, with $A, B \in K^{2}(H)$.

This can be viewed as a non-commutative analog of the elementary statement that a sequence x_{n} lies in ℓ^{1} if and only if it can be written as the product of two ℓ^{2} sequences.

Proof. If $T \in K^{1}$, then Theorem 14.12 shows that

$$
\begin{equation*}
T=\sum s_{n}\left\langle x_{n}, \cdot\right\rangle y_{n}, \tag{14.4}
\end{equation*}
$$

for certain ONSs $\left\{x_{n}\right\},\left\{y_{n}\right\}$ and with $s_{n} \in \ell^{1}$. Let

$$
A=\sum s_{n}^{1 / 2}\left\langle y_{n}, \cdot\right\rangle y_{n}, \quad B=\sum s_{n}^{1 / 2}\left\langle x_{n}, \cdot\right\rangle y_{n}
$$

Then $A, B \in K^{2}$ since their singular values are $s_{n}^{1 / 2}$; compare Exercise 14.13. Moreover, $T=A B$, as required.

Conversely, suppose we have such a factorization $T=A B$, with $A, B \in K^{2}$. Then $T \in K(H)$, so we still have (14.4) available. It follows that

$$
\begin{align*}
\sum s_{n} & =\sum\left\langle y_{n}, T x_{n}\right\rangle=\sum\left\langle A^{*} y_{n}, B x_{n}\right\rangle \leq \sum\left\|A^{*} y_{n}\right\|\left\|B x_{n}\right\| \tag{14.5}\\
& \leq\left(\sum\left\|A^{*} y_{n}\right\|^{2}\right)^{1 / 2}\left(\sum\left\|B x_{n}\right\|^{2}\right)^{1 / 2}<\infty
\end{align*}
$$

so $T \in K^{1}$, as claimed.
We call K^{1} trace class because we can indeed introduce, in a natural way, a trace of such operators. Recall that for a matrix $A \in \mathbb{C}^{n \times n}$, we define $\operatorname{tr} A=\sum_{j=1}^{n} a_{j j}$ as the sum of the diagonal elements. If we use the standard ONB $\left\{e_{j}\right\}$, then we can also write this as $\operatorname{tr} A=$ $\sum\left\langle e_{j}, A e_{j}\right\rangle$.
Theorem 14.16. Let $T \in K^{1}(H)$. Then $\sum\left|\left\langle e_{\alpha}, T e_{\alpha}\right\rangle\right|<\infty$ for any ONB $\left\{e_{\alpha}\right\}$. Moreover,

$$
\operatorname{tr} T:=\sum_{\alpha}\left\langle e_{\alpha}, T e_{\alpha}\right\rangle
$$

does not depend on the choice of $O N B$. We have $|\operatorname{tr} T| \leq\|T\|_{1}$.

Proof. Use Theorem 14.15 to write $T=A B$, with $A, B \in K^{2}$. Then we see as above (compare (14.5)) that

$$
\sum\left|\left\langle e_{\alpha}, T e_{\alpha}\right\rangle\right| \leq\left(\sum\left\|A^{*} e_{\alpha}\right\|^{2}\right)^{1 / 2}\left(\sum\left\|B e_{\alpha}\right\|^{2}\right)^{1 / 2}<\infty
$$

Similarly, if $\left\{f_{\beta}\right\}$ is another ONB, then

$$
\begin{aligned}
\sum_{\alpha}\left\langle e_{\alpha}, T e_{\alpha}\right\rangle & =\sum_{\alpha} \sum_{\beta}\left\langle A^{*} e_{\alpha}, f_{\beta}\right\rangle\left\langle f_{\beta}, B e_{\alpha}\right\rangle \\
& =\sum_{\beta} \sum_{\alpha}\left\langle B^{*} f_{\beta}, e_{\alpha}\right\rangle\left\langle e_{\alpha}, A f_{\beta}\right\rangle=\sum_{\beta}\left\langle f_{\beta}, B A f_{\beta}\right\rangle .
\end{aligned}
$$

There are at most countably many non-zero summands, so changing the order of summation can be justified by observing that the sums converge absolutely. This calculation always gets us to the same final expression, no matter what ONB $\left\{e_{\alpha}\right\}$ we start out with, so it shows that $\sum\left\langle e_{\alpha}, T e_{\alpha}\right\rangle$ does not depend on the ONB. Finally, if we again work with an ONB consisting of eigenvectors of $|T|$, so $|T| e_{n}=s_{n} e_{n}$, then

$$
|\operatorname{tr} T| \leq \sum\left|\left\langle e_{n}, T e_{n}\right\rangle\right| \leq \sum\left\|T e_{n}\right\|=\sum\left\||T| e_{n}\right\|=\sum s_{n}=\|T\|_{1}
$$

as claimed.
Exercise 14.17. Let $T \in K^{p}(H)$. Show that then $|T|^{p} \in K^{1}(H)$ and $\|T\|_{p}^{p}=\operatorname{tr}|T|^{p}$. In particular, $\|T\|_{2}^{2}=\operatorname{tr} T^{*} T$.

This last formula suggests that $K^{2}(H)$ might be a Hilbert space, with scalar product $\langle A, B\rangle=\operatorname{tr} A^{*} B$, and this can indeed be established.

Exercise 14.18. Let $T \in K(H)$ be normal, and list the non-zero eigenvalues as z_{n}, with $\left|z_{1}\right| \geq\left|z_{2}\right| \geq \ldots$, and repetitions according to multiplicity. Show that $s_{n}(T)=\left|z_{n}\right|$. In particular, $T \in K^{1}(H)$ if and only if $\left(z_{n}\right) \in \ell^{1}$. Show also that in this case, $\operatorname{tr} T=\sum z_{n}$.

Theorem 14.17. Let H be a separable Hilbert space. Then the only closed two-sided ideals of $B(H)$ are $I=0, K(H), B(H)$.

Proof. We already know that $I=K(H)$ is a closed two-sided ideal. Suppose now that $I \neq 0$ is any closed two-sided ideal. Fix any $T \in I$, $T \neq 0$. If we take P as the projection onto an $x \in H$ with $T x \neq 0$, then the operator $S=T P \in I$ will be of the form $S=\langle x, \cdot\rangle y$, with $x, y \neq 0$.

Now $A S B=\left\langle B^{*} x, \cdot\right\rangle A y \equiv\left\langle x^{\prime}, \cdot\right\rangle y^{\prime}$. These operators will also be in I, for any $A, B \in B(H)$, and thus all rank one operators $\langle x, \cdot\rangle y$, for arbitrary $x, y \in H$, will be in I. The closed linear span of these is all of $K(H)$, by Theorem 14.12. Thus $I \supseteq K(H)$.

If I also contains a non-compact operator T, then $S=T^{*} T \in I$ is also non-compact, by Theorem 14.5, and S is self-adjoint. Denote its spectral resolution by E. Then $M=R\left(E\left((-r, r)^{c}\right)\right)$ must be infinitedimensional for all small $r>0$, or else S could be approximated in operator norm by the finite rank operators $S E\left((-r, r)^{c}\right)$ and would be compact. Fix such an $r>0$. Now M is a reducing subspace for S, and $P S P$, with $P=E\left((-r, r)^{c}\right)$ denoting the projection onto M, is invertible when viewed as an operator on M or, equivalently, an element of $B(M)$. All infinite-dimensional separable Hilbert space are isomorphic, so there is a unitary map $U: M \rightarrow H$. We can view U as an element of $B(H)$ by setting $U x=0$ for $x \in M^{\perp}$ (of course, this operator is not unitary on H; it is a partial isometry). Then $U P S P U^{*} \in I$ is a realization of $P S P$ on H rather than M. This operator is invertible, so $I=B(H)$.

Exercise 14.19. Let $V \in B(H)$ be a partial isometry with initial space L and final space M. This means that V maps L isometrically onto M, and $N(V)=L^{\perp}$. Show that then V^{*} is a partial isometry with initial space M and final space L. Also, show that $V^{*} V=P_{L}, V V^{*}=P_{M}$.

Exercise 14.20. Consider the operator $T \in B\left(\ell^{2}\right)$ that is given by

$$
(T x)_{n}=\left\{\begin{array}{ll}
0 & n=1 \\
\frac{x_{n-1}}{n} & n \geq 2
\end{array} .\right.
$$

(a) Prove that T is compact.
(b) Prove that $\sigma(T)=\{0\}, \sigma_{p}(T)=\emptyset$.

Exercise 14.21. Consider the Volterra operator $T \in B\left(L^{2}(0,1)\right)$,

$$
(T f)(x)=\int_{0}^{x} f(t) d t
$$

Show that again (compare the previous Exercise) T is compact, $\sigma(T)=$ $\{0\}$, and T has no eigenvalues.

Exercise 14.22. Consider again the operator T from Exercise 14.20. Find T^{*} and $|T|$ and prove that $s_{n}(T)=\frac{1}{n+1}$ (so, in particular, $T \in K^{p}$ for $p>1$, but $T \notin K^{1}$).

Exercise 14.23. Consider again the multiplication operator $(T x)_{n}=$ $t_{n} x_{n}$ on ℓ^{2} from Exercise 14.3. Show that $T \in K^{1}$ if and only if $\sum\left|t_{n}\right|<$ ∞.

Exercise 14.24. Let μ be a finite Borel measure on $[0,1]$, and let K : $[0,1] \times[0,1] \rightarrow \mathbb{C}$ be a continuous function. Show that the operator
$T: L^{2}([0,1], \mu) \rightarrow L^{2}([0,1], \mu)$,

$$
(T f)(x)=\int_{[0,1]} K(x, y) f(y) d \mu(y)
$$

is compact.

