
14. Compact operators

Definition 14.1. A linear operator T : H → H (defined everywhere)

is called compact if T (B) ⊆ H is a compact set; here, B = B1(0) =
{x ∈ H : ‖x‖ < 1}. We denote the set of compact operators on H by
K(H).

Compact operators T : X → Y between Banach spaces can be de-
fined in the same way, but I have specialized right away to the case of
most interest to us.

Exercise 14.1. Let T ∈ K(H). Show that T (B) is compact for any
bounded set B ⊆ X.

Compact sets are bounded, so compact operators are bounded oper-
ators: K(H) ⊆ B(H).

Proposition 14.2. T : H → H is compact if and only if every bounded
sequence xn ∈ H has a subsequence xnj

for which Txnj
converges.

Exercise 14.2. Prove the Proposition.

Theorem 14.3. Suppose that S, T ∈ K(H), A ∈ B(H), and c ∈ C.
Then S + T, cT,AT, TA ∈ K(H).

Put differently, this says that K(H) ⊆ B(H) is a two-sided ideal
in the C∗-algebra B(H) (“two-sided” refers to the fact that we may
multiply by A ∈ B(H) from either side), and Theorem 14.4 below
shows that K(H) is also closed. Later, in Theorem 14.17, we will see
that the converse of this statement also holds: K(H) is the only closed
two-sided ideal 6= 0, B(H) of this algebra.

Proof. We use the criterion from Proposition 14.2. Given a sequence
xn ∈ H, ‖xn‖ ≤ C, pick a subsequence x′n for which Sx′n converges
and then a sub-subsequence x′′n for which Tx′′n converges, too. Then
(S + T )x′′n, cTx′′n, and ATx′′n all converge. Furthermore, since A is
bounded, Axn is just another bounded sequence, so T (Axn) can also
be made convergent by passing to a subsequence. �

Theorem 14.4. K(H) is a closed subset of B(H).

Proof. Suppose that Tn ∈ K(H), T ∈ B(H), ‖Tn − T‖ → 0, and
let xn ∈ H be a bounded sequence, with ‖xn‖ ≤ 1, say. We must
show that Txn has a convergent subsequence. For fixed m, we can
of course make Tmxn convergent as n → ∞ by passing to a suitable
subsequence, and we can do better than this: a diagonal process lets
us find a subsequence x′n with the property that limn→∞ Tmx

′
n exists

for all m.
175
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Now if ε > 0 is given, fix an n ∈ N with ‖Tn − T‖ < ε. Then take
N ∈ N so large that (for this n) ‖Tn(x′j−x′k)‖ < ε for all j, k ≥ N . For
such j, k, we then also have

‖T (x′j − x′k)‖ ≤ ‖Tn(x′j − x′k)‖+ ‖Tn − T‖ ‖x′j − x′k‖
< ε+ 2‖Tn − T‖ < 3ε,

so Tx′n is a Cauchy sequence and thus convergent. �

We call T ∈ B(H) a finite rank operator if dimR(T ) < ∞. In
this case, if ‖xn‖ ≤ C, then Txn is a bounded sequence from the
finite-dimensional space R(T ) ∼= CN , so we will be able to extract
a convergent subsequence (this is the Bolzano-Weierstraß theorem).
Recall also that all norms on a finite-dimensional space are equivalent,
so it suffices to identify R(T ) with CN as a vector space and then
automatically the induced topology must be the usual topology on
CN .

So every finite rank operator is compact. In particular, B(Cn) =
K(Cn). Further examples of compact operators are provided by the
following Exercise.

Exercise 14.3. Suppose that tn → 0, and let T : `2 → `2 be the operator
of multiplication by tn. More precisely, (Tx)n = tnxn. Show that T is
compact.
Suggestion: Consider the finite rank truncations TN corresponding to

the truncated sequence t
(N)
n and use Theorem 14.4; here, t

(N)
n = tn if

n ≤ N and t
(N)
n = 0 if n > N .

Theorem 14.5. Let T ∈ B(H). Then the following are equivalent:
(a) T ∈ K(H); (b) T ∗ ∈ K(H); (c) T ∗T ∈ K(H).

Proof. By Theorem 14.3, (a) or (b) both imply (c).
Conversely, assume now that (c) holds, and let xn ∈ H, ‖xn‖ ≤ C.

Then T ∗Txn converges on a suitable subsequence, which, for conve-
nience, we will again denote by xn. The following calculation shows
that Txn converges on the same subsequence, and this will establish
(a).

‖T (xm − xn)‖2 = 〈T (xm − xn), T (xm − xn)〉
= 〈xm − xn, T ∗T (xm − xn)〉
≤ ‖xm − xn‖ ‖T ∗T (xm − xn)‖ ≤ 2C‖T ∗T (xm − xn)‖

Finally, if (a) holds, then also TT ∗ = T ∗∗T ∗ ∈ K(H), by Theorem
14.3 again, and now the argument from the preceding paragraph shows
that T ∗ ∈ K(H) also. �
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Exercise 14.4. Let P ∈ B(H) be the projection onto the subspace
M ⊆ H. Show that P is compact if and only if dimM <∞.

Theorem 14.6. Let T : H → H be a linear operator (with D(T ) = H).
(a) The following statements are equivalent:
(i) T ∈ B(H);
(ii) xn → 0 =⇒ Txn → 0;

(iii) xn
w−→ 0 =⇒ Txn

w−→ 0;

(iv) xn → 0 =⇒ Txn
w−→ 0

(b) The following statements are equivalent:
(i) T ∈ K(H);

(ii) xn
w−→ 0 =⇒ Txn → 0

Here, we of course need to remember that xn
w−→ x if and only if

〈y, xn〉 → 〈y, x〉 for all y ∈ H.

Exercise 14.5. Let xn ∈ H and suppose that limn→∞〈y, xn〉 exists for
every y ∈ H. Show that then xn is bounded. Hint: Apply the uniform
boundedness principle to the maps Fn(y) = 〈xn, y〉.

Note that every weakly convergent sequence xn satisfies the assump-
tion from this Exercise; conversely, as we will in fact show below, at
the end of the proof of Lemma 14.7, such a sequence xn is weakly
convergent, so we could have assumed this instead.

In the proof of Theorem 14.6, we will also need the following lemma,
which is of considerable independent interest.

Lemma 14.7. Every bounded sequence xn ∈ H has a weakly convergent
subsequence.

Proof. For every fixed m, the sequence (〈xm, xn〉)n is a bounded se-
quence of complex numbers, so it has a convergent subsequence by
the Bolzano-Weierstraß Theorem. Again, a diagonal process lets us in
fact find a subsequence x′n for which 〈xm, x′n〉 converges, as n → ∞,
for all m. The (anti-)linearity of the scalar product now implies that
lim〈y, x′n〉 exists for all y ∈ L(xm).

Exercise 14.6. Show that this limit exists for all y ∈ L(xm). Suggestion:
Show that the scalar products form a Cauchy sequence.

Finally, if w ∈ H is arbitrary, write w = y + z with y ∈M = L(xm)
and z ∈M⊥. Then 〈w, x′n〉 = 〈y, x′n〉, so this sequence converges, too.

To show that x′n is weakly convergent, we still need to produce an
x ∈ H such that lim〈w, x′n〉 = 〈w, x〉 for all w ∈ H. To do this,
consider the linear functional F (w) = lim〈x′n, w〉. It is bounded since
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|F (w)| ≤ lim sup ‖x′n‖ ‖w‖ ≤ C‖w‖. Therefore, the Riesz Representa-
tion Theorem shows that F (w) = 〈x,w〉 for some x ∈ H, as desired. �

Proof of Theorem 14.6. (a) (i) =⇒ (ii): This is obvious, because (ii) is
just the sequence version of continuity at x = 0, and so (i) and (ii) are
in fact equivalent.

(ii) =⇒ (iii): As just observed, T ∈ B(H). If xn
w−→ 0, then also

〈y, Txn〉 = 〈T ∗y, xn〉 → 0

for all y ∈ H, so Txn
w−→ 0.

(iii) =⇒ (iv) is trivial.
(iv) =⇒ (i): Suppose that T /∈ B(H). Then we can find xn ∈ H,

‖xn‖ = 1, with ‖Txn‖ ≥ n2. Let yn = (1/n)xn. Then yn → 0, but
‖Tyn‖ ≥ n, so, by Exercise 14.5, the sequence Tyn cannot be weakly
convergent.

(b) (i) =⇒ (ii): Let xn ∈ H, xn
w−→ 0. Then xn is bounded (Exercise

14.5 again), so there exists a subsequence x′n for which Tx′n converges,

say Tx′n → y. In particular, Tx′n
w−→ y, and now part (a), condition

(iii) shows that we must have y = 0 here. This whole argument has in
fact shown that every subsequence x′n of xn has a sub-subsequence x′′n
with Tx′′n → 0. It follows that Txn → 0, without the need of passing
to a subsequence.

(ii) =⇒ (i): Let xn be a bounded sequence. By Lemma 14.7, we can
extract a weakly convergent subsequence, which we denote by xn also.
So xn

w−→ x, and thus xn − x
w−→ 0. By hypothesis, T (xn − x) → 0, so

indeed Txn converges (to Tx). �

We now discuss the spectral theory of compact operators. We first
deal with compact normal operators. The following two results give a
complete spectral theoretic characterization of these.

Theorem 14.8. Let T ∈ B(H) be a compact, normal operator. Then
σ(T ) is countable. Write σ(T )\{0} = {zn}. Then each zn is an eigen-
value of T of finite multiplicity: 1 ≤ dimN(T − zn) < ∞. Moreover,
zn → 0 if {zn} is infinite.

If Pn denotes the projection onto N(T − zn), then

(14.1) T =
∑

znPn.

This series converges in B(H), for an arbitrary arrangement of the zn.
Finally, if dimH =∞, then 0 ∈ σ(T ).

Proof. Denote the open disk about 0 of radius r by Dr = {z ∈ C :
|z| < r}, and let P = E(Dc

r), where E is the spectral resolution of T .
Let M = R(P ), which is a reducing subspace for T by Exercise 10.22.
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I claim that dimM < ∞. Indeed, if this were wrong, we could find a
sequence xn ∈ M , ‖xn‖ = 1, xn

w−→ 0 (pick any ONS in M). Theorem
14.6(b) then shows that Txn → 0. This, however, is impossible because
the functional calculus shows that

‖Txn‖2 =

∫
C
|z|2d‖E(z)xn‖2 ≥ r2 > 0.

Now since M is reducing, we can decompose T = TM ⊕ TM⊥ , and
M⊥ = R(E(Dr)), so ‖TM⊥‖ ≤ r, and thus TM⊥ − z is definitely invert-
ible in B(M⊥) if |z| > r. So such a z will be in ρ(T ), unless z ∈ σ(TM),
but TM is an operator on the finite-dimensional space M , so its spec-
trum consists of eigenvalues only, and there are only finitely many of
these. Conversely, it is clear that every eigenvalue of TM is an eigen-
value of T also, so we have shown the following: σ(T )∩Dc

r is finite for
every r > 0 and contains only eigenvalues of T . Moreover, these are of
finite multiplicity because N(T − z) = E({z}) ⊆ E(Dc

r) = M .
It now follows that σ(T ) is countable, and we also obtain the state-

ments about the sequence zn. If dimH = ∞, then either E({0}) 6= 0
or the sequence zn is infinite and thus converges to 0. In both cases,
0 ∈ σ(T ).

It remains to establish (14.1). Notice that Pn = E({zn}); in partic-
ular, the Pn have mutually orthogonal ranges. Let’s first verify that
(14.1) converges in B(H). More precisely, we will prove that the par-
tial sums SN =

∑
|n|≤N znPn form a Cauchy sequence. Let x ∈ H, and

consider, for N ′ > N ,

‖(SN ′ − SN)x‖2 =
N ′∑

n=N+1

|zn|2‖Pnx‖2 ≤
(

sup
n>N
|zn|2

)
·

N ′∑
n=N+1

‖Pnx‖2

≤
(

sup
n>N
|zn|2

)
· ‖x‖2.

This implies that

‖SN ′ − SN‖ ≤ sup
n>N
|zn|,

and this supremum goes to zero as N →∞, as desired.
Now SN =

∫
χ{z1,...,zN}(z)z dE(z) (the integrand is a simple function,

taking only finitely many values). Since E is supported by σ(T ) and
T =

∫
z dE(z), functional calculus shows that

‖SN − T‖ = sup
n>N
|zn| → 0,

as claimed. �
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So normal compact operators have representations of the type (14.1).
It is also true that, conversely, if we are given data zn and Pn with the
properties stated in Theorem 14.8, then we can use (14.1) to define
a normal compact operator T . In other words, (14.1) for sequences
zn → 0 and mutually orthogonal finite-dimensional projections Pn lists
exactly all normal compact operators.

To formulate this converse, we slightly change the notation. We let
〈x, ·〉x denote the operator that maps y 7→ 〈x, y〉x.

Exercise 14.7. Show that 〈x, ·〉x = ‖x‖2PL(x). Also, show that if
{x1, . . . , xN} is an ONB of the (finite-dimensional) subspace M , then

PM =
N∑
n=1

〈xn, ·〉xn.

Theorem 14.9. Let {xn} be an ONS, and let zn ∈ C, zn 6= 0, zn → 0
(if the sequence is infinite). Then the series

(14.2) T =
∑

zn〈xn, ·〉xn

converges in B(H) (if infinite) to a compact normal operator T . We
have σ(T ) \ {0} = σp(T ) \ {0} = {zn}, and Txn = znxn.

Note that Exercise 14.7 guarantees that the series from (14.1) are of
this form; if dimR(Pn) > 1, then we need to pick an ONB of this space
and repeat the corresponding eigenvalue zn that number of times.

Proof. By Exercise 14.7, the operators 〈xn, ·〉xn are projections onto
the mutually orthogonal subspaces L(xn), so convergence of the series
in B(H) follows as in the previous proof. For each fixed N , the operator∑N

n=1 zn〈xn, ·〉xn is of finite rank, thus compact, and hence T is compact
by Theorem 14.4.

To prove that T is normal, we temporarily change our notation again
and write 〈xn, ·〉xn = Pn. We compute

TT ∗ = lim
N→∞

N∑
m=1

zmPm

N∑
n=1

znPn = lim
N→∞

N∑
n=1

|zn|2Pn

= lim
N→∞

N∑
n=1

znPn

N∑
m=1

zmPm = T ∗T,

so T is normal.
It is also clear that Txn = znxn, and since T is compact, any other

non-zero point from the spectrum would have to be an eigenvalue, too,
so the following Exercise finishes the proof. �
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Exercise 14.8. Show that if z /∈ {zn}∪{0}, then Tx = zx, with T given
by (14.2), has no solution x 6= 0.

We now move on to arbitrary compact operators T ∈ B(H), not nec-
essarily normal. Actually, we are going to start with some introductory
material that applies to arbitrary bounded operators T ∈ B(H) and is
of independent interest in this generality. We will consider T ∗T , and
this is a positive operator by Theorem 9.15.

Exercise 14.9. Give an easier proof of this statement (T ∗T ≥ 0 if T ∈
B(H)) that is based on Theorem 10.13.

By Theorem 10.14, T ∗T has a unique positive square root, which we
will denote by |T | := (T ∗T )1/2.

Exercise 14.10. Show that if T is normal, then this definition of |T |
coincides with the one obtained from the functional calculus: we have
|T | = f(T ), with f(z) = |z|. In other words, show that

|T | =
∫
C
|z| dE(z),

and here E is the spectral resolution of T .

This operator |T | has the important property that

(14.3) ‖|T |x‖ = ‖Tx‖

for all x ∈ H. We see this from the calculation

‖|T |x‖2 = 〈|T |x, |T |x〉 = 〈x, |T |2x〉 = 〈x, T ∗Tx〉 = 〈Tx, Tx〉 = ‖Tx‖2.

Exercise 14.11. Compute |T | for

T =

(
0 −2
0 0

)
and T =

(
1 1√
2 −

√
2

)
.

Theorem 14.10. Let T ∈ B(H). Then there is a unique unitary map

V : R(|T |)→ R(T ) such that T = V |T |.

This representation T = V |T | is called the polar decomposition of T .
This terminology emphasizes the analogy to the polar representation
of complex numbers z = eiϕ|z|.

We can of course also define V on all of H here. More specifically,
we can set Wx = V x for x ∈ R(|T |) and Wx = 0 for x ∈ R(|T |)⊥,
and we still have T = W |T |, since obviously only the values of W on
R(|T |) matter here. Such a W ∈ B(H) that maps a subspace M ⊆ H
isometrically and annihilates M⊥ is called a partial isometry.
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Proof. To construct V , define V0 : R(|T |) → R(T ) by V0(|T |x) = Tx.
This is indeed well defined because if |T |x = |T |y, then |T |(x− y) = 0,
so, by (14.3), T (x− y) = 0 as well, so Tx = Ty. Moreover, (14.3) also
shows that V0 is isometric. In particular, V0 is continuous, and thus
there is a unique isometric extension to R(|T |). Since R(V0) = R(T )

and isometries have closed ranges, it follows that R(V ) = R(T ). By
the construction of V0, we have the identity V0|T | = T , so V |T | = T
(note that |T |x ∈ R(|T |) for all x, so as far as this identity is concerned,
it doesn’t matter if or how we extend V0).

Finally, if also W |T | = T , then the restriction of W to R(|T |) must
agree with V0, and there is only one continuous extension to the closure,
so W = V and V is unique. �

Exercise 14.12. (a) Show that every T ∈ Cn×n has a polar decomposi-
tion T = U |T | with a unitary U ∈ Cn×n.
(b) Show that the result of part (a) does not hold on infinite-dimensional
Hilbert spaces. Suggestion: Consider T ∈ B(`2), (Tx)n = xn−1 (n ≥
2), (Tx)1 = 0.

Theorem 14.11. If T ∈ K(H), then also |T | ∈ K(H).

Proof. We have |T | ∈ B(H), |T |∗ = |T |, so |T |∗|T | = |T |2 = T ∗T ∈
K(H) by Theorem 14.5, and this result then also shows that |T | ∈
K(H). �

To obtain series representations for arbitrary compact operators, we
introduce additional data. Let s1(T ) ≥ s2(T ) ≥ s3(T ) ≥ . . . > 0
be the non-zero eigenvalues of |T |, repeated according to their (finite)
multiplicities. The sn(T ) are called the singular values of T . If the
sequence of singular values is infinite, then sn(T )→ 0.

Theorem 14.12. Let T ∈ K(H). Then sn(T ) = sn(T ∗) = sn(|T |) =
sn(|T ∗|). Moreover, there exist ONSs {xn}, {yn}, consisting of eigen-
vectors of |T | and |T ∗|, respectively (so |T |xn = snxn, |T ∗|yn = snyn),
such that

|T | =
∑

sn〈xn, ·〉xn, |T ∗| =
∑

sn〈yn, ·〉yn

T =
∑

sn〈xn, ·〉yn, T ∗ =
∑

sn〈yn, ·〉xn.

These sums converge in B(H) (if they are infinite).

Proof. We see as in the proof of Theorem 14.8 that these series converge
in B(H) if {xn}, {yn} are (arbitrary) ONSs. From this theorem, we
also know that |T | can indeed be written in this way, if we interpret
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sn = sn(T ) and |T |xn = snxn. Also, from the definition of the singular
values, it is already clear that sn(T ) = sn(|T |) and sn(T ∗) = sn(|T ∗|).

With this choice of xn in place (so |T |xn = snxn), Theorem 14.10
shows that

Tx = V |T |x = V
∑

sn〈xn, x〉xn =
∑

sn〈xn, x〉yn,

with yn = V xn. Since xn is an ONS from R(|T |) and V is unitary on
this space, yn is an ONS, too. Moreover, for arbitrary x, y ∈ H, we
have

〈x, T ∗y〉 = 〈Tx, y〉 =
∑

sn〈xn, x〉〈yn, y〉 =
∑

sn〈x, xn〉〈yn, y〉

= 〈x,
∑

sn〈yn, y〉xn〉.

This establishes the formula for T ∗. We must still show that the yn’s
are eigenvectors of |T ∗|. A similar calculation reveals that

TT ∗y = T
(∑

sn〈yn, y〉xn
)

=
∑
m,n

smsn〈yn, y〉〈xm, xn〉ym

=
∑

s2n〈yn, y〉yn.

This says that |T ∗| =
∑
sn〈yn, ·〉yn, and this formula clarifies every-

thing: First of all, the sn = sn(T ) are indeed the eigenvalues of |T ∗|,
so sn(T ) = sn(T ∗). Moreover, we also see that the yn are eigenvectors
corresponding to these eigenvalues, and we obtain the asserted formula
for |T ∗|. �

Corollary 14.13. Let T ∈ B(H). Then T is compact if and only if
there are finite rank operators Tn ∈ B(H) such that ‖Tn − T‖ → 0.

Proof. Finite rank operators are compact, so one direction follows from
Theorem 14.4. Conversely, if T is compact, then T =

∑
sn〈xn, ·〉yn,

and the partial sums TN =
∑N

n=1 sn〈xn, ·〉yn form a sequence of finite
rank operators that converges to T in operator norm. �

Exercise 14.13. Let {xn}, {yn} be ONSs, and let σn > 0 be a decreasing
sequence with σn → 0 (if the sequence is infinite). Show that the series

T =
∑
n

σn〈xn, ·〉yn

converges in B(H) (if infinite) and defines a compact operator T ∈
K(H) with singular values sn(T ) = σn.

The singular values can be used to introduce subclasses of compact
operators. More precisely, for 1 ≤ p <∞, let

Kp(H) = {T ∈ K(H) : sn(T ) ∈ `p}.
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We could also take p =∞ here, but then K∞(H) = K(H), all compact
operators. The spaces Kp are sometimes called von Neumann-Schatten
classes or trace ideals. Of particular interest are K2(H), the Hilbert-
Schmidt operators, and K1(H), the trace class operators.

For T ∈ Kp(H), we introduce ‖T‖p = ‖sn(T )‖`p = (
∑
sn(T )p)1/p.

This indeed defines a norm on Kp(H), and in fact (Kp(H), ‖ · ‖p) is
a Banach space, but these statements are not obvious. In fact, it is
not even clear right away if Kp is a vector space. We will not prove
these general statements here, but see Exercise 14.15 below for the case
p = 2.

Exercise 14.14. Prove that if T is compact, then ‖T‖ = s1(T ). So
‖T‖∞ = ‖T‖(= ‖T‖B(H)) and ‖T‖ ≤ ‖T‖p for all 1 ≤ p <∞.

Theorem 14.14. Let T ∈ K(H), and let {eα} be an ONB of H.
Then T ∈ K2(H) if and only if

∑
‖Teα‖2 <∞. In this case, ‖T‖2 =

(
∑
‖Teα‖2)1/2 (for any ONB).

Proof. We first show that (for any T ∈ K(H), Hilbert-Schmidt or
not),

∑
‖Teα‖2 is independent of the choice of ONB {eα} (with the

understanding that the sum may equal infinity). Consider a second
ONB {fβ}. Then, by Parseval’s identity,∑

β

‖T ∗fβ‖2 =
∑
β

∑
α

|〈eα, T ∗fβ〉|2 =
∑
α

∑
β

|〈eα, T ∗fβ〉|2

=
∑
α

∑
β

|〈Teα, fβ〉|2 =
∑
α

‖Teα‖2.

The change of the order of summation in the second step is justified
when there are only countably many non-zero summands because the
terms are non-negative, or if there are uncountably many terms, then
both sides equal infinity. This whole calculation works for any two
ONBs, so it also shows that

∑
‖Teα‖2 =

∑
‖Tgγ‖2, if {gγ} is another

ONB.
We now take as our ONB {eα} eigenvectors of |T |, so |T |en = snen,

supplemented by an ONB of N(|T |) if necessary. Then∑
‖Teα‖2 =

∑
‖|T |eα‖2 =

∑
s2n = ‖T‖22,

and this implies everything that was stated in the theorem. �

Exercise 14.15. Prove that K2(H) is a vector space and that ‖ · ‖2
defines a norm on K2(H).
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Exercise 14.16. Show that A ∈ Kp(Cn) for every matrix A ∈ Cn×n, for
any p ≥ 1. Then show that

‖A‖22 =
n∑

j,k=1

|ajk|2 .

Theorem 14.15. Let T ∈ B(H). Then T ∈ K1(H) if and only if
T = AB, with A,B ∈ K2(H).

This can be viewed as a non-commutative analog of the elementary
statement that a sequence xn lies in `1 if and only if it can be written
as the product of two `2 sequences.

Proof. If T ∈ K1, then Theorem 14.12 shows that

(14.4) T =
∑

sn〈xn, ·〉yn,

for certain ONSs {xn}, {yn} and with sn ∈ `1. Let

A =
∑

s1/2n 〈yn, ·〉yn, B =
∑

s1/2n 〈xn, ·〉yn.

Then A,B ∈ K2 since their singular values are s
1/2
n ; compare Exercise

14.13. Moreover, T = AB, as required.
Conversely, suppose we have such a factorization T = AB, with

A,B ∈ K2. Then T ∈ K(H), so we still have (14.4) available. It
follows that∑

sn =
∑
〈yn, Txn〉 =

∑
〈A∗yn, Bxn〉 ≤

∑
‖A∗yn‖ ‖Bxn‖(14.5)

≤
(∑

‖A∗yn‖2
)1/2 (∑

‖Bxn‖2
)1/2

<∞,

so T ∈ K1, as claimed. �

We call K1 trace class because we can indeed introduce, in a natural
way, a trace of such operators. Recall that for a matrix A ∈ Cn×n,
we define tr A =

∑n
j=1 ajj as the sum of the diagonal elements. If

we use the standard ONB {ej}, then we can also write this as tr A =∑
〈ej, Aej〉.

Theorem 14.16. Let T ∈ K1(H). Then
∑
|〈eα, T eα〉| < ∞ for any

ONB {eα}. Moreover,

tr T :=
∑
α

〈eα, T eα〉

does not depend on the choice of ONB. We have |tr T | ≤ ‖T‖1.
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Proof. Use Theorem 14.15 to write T = AB, with A,B ∈ K2. Then
we see as above (compare (14.5)) that∑

|〈eα, T eα〉| ≤
(∑

‖A∗eα‖2
)1/2 (∑

‖Beα‖2
)1/2

<∞.

Similarly, if {fβ} is another ONB, then∑
α

〈eα, T eα〉 =
∑
α

∑
β

〈A∗eα, fβ〉〈fβ, Beα〉

=
∑
β

∑
α

〈B∗fβ, eα〉〈eα, Afβ〉 =
∑
β

〈fβ, BAfβ〉.

There are at most countably many non-zero summands, so changing
the order of summation can be justified by observing that the sums
converge absolutely. This calculation always gets us to the same final
expression, no matter what ONB {eα} we start out with, so it shows
that

∑
〈eα, T eα〉 does not depend on the ONB. Finally, if we again

work with an ONB consisting of eigenvectors of |T |, so |T |en = snen,
then

|tr T | ≤
∑
|〈en, T en〉| ≤

∑
‖Ten‖ =

∑
‖|T |en‖ =

∑
sn = ‖T‖1,

as claimed. �

Exercise 14.17. Let T ∈ Kp(H). Show that then |T |p ∈ K1(H) and
‖T‖pp = tr |T |p. In particular, ‖T‖22 = tr T ∗T .

This last formula suggests that K2(H) might be a Hilbert space, with
scalar product 〈A,B〉 = tr A∗B, and this can indeed be established.

Exercise 14.18. Let T ∈ K(H) be normal, and list the non-zero eigen-
values as zn, with |z1| ≥ |z2| ≥ . . ., and repetitions according to multi-
plicity. Show that sn(T ) = |zn|. In particular, T ∈ K1(H) if and only
if (zn) ∈ `1. Show also that in this case, tr T =

∑
zn.

Theorem 14.17. Let H be a separable Hilbert space. Then the only
closed two-sided ideals of B(H) are I = 0, K(H), B(H).

Proof. We already know that I = K(H) is a closed two-sided ideal.
Suppose now that I 6= 0 is any closed two-sided ideal. Fix any T ∈ I,
T 6= 0. If we take P as the projection onto an x ∈ H with Tx 6= 0,
then the operator S = TP ∈ I will be of the form S = 〈x, ·〉y, with
x, y 6= 0.

Now ASB = 〈B∗x, ·〉Ay ≡ 〈x′, ·〉y′. These operators will also be in
I, for any A,B ∈ B(H), and thus all rank one operators 〈x, ·〉y, for
arbitrary x, y ∈ H, will be in I. The closed linear span of these is all
of K(H), by Theorem 14.12. Thus I ⊇ K(H).
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If I also contains a non-compact operator T , then S = T ∗T ∈ I is
also non-compact, by Theorem 14.5, and S is self-adjoint. Denote its
spectral resolution by E. Then M = R(E((−r, r)c)) must be infinite-
dimensional for all small r > 0, or else S could be approximated in
operator norm by the finite rank operators SE((−r, r)c) and would
be compact. Fix such an r > 0. Now M is a reducing subspace for
S, and PSP , with P = E((−r, r)c) denoting the projection onto M ,
is invertible when viewed as an operator on M or, equivalently, an
element of B(M). All infinite-dimensional separable Hilbert space are
isomorphic, so there is a unitary map U : M → H. We can view U
as an element of B(H) by setting Ux = 0 for x ∈ M⊥ (of course,
this operator is not unitary on H; it is a partial isometry). Then
UPSPU∗ ∈ I is a realization of PSP on H rather than M . This
operator is invertible, so I = B(H). �

Exercise 14.19. Let V ∈ B(H) be a partial isometry with initial space
L and final space M . This means that V maps L isometrically onto M ,
and N(V ) = L⊥. Show that then V ∗ is a partial isometry with initial
space M and final space L. Also, show that V ∗V = PL, V V ∗ = PM .

Exercise 14.20. Consider the operator T ∈ B(`2) that is given by

(Tx)n =

{
0 n = 1
xn−1

n
n ≥ 2

.

(a) Prove that T is compact.
(b) Prove that σ(T ) = {0}, σp(T ) = ∅.

Exercise 14.21. Consider the Volterra operator T ∈ B(L2(0, 1)),

(Tf)(x) =

∫ x

0

f(t) dt.

Show that again (compare the previous Exercise) T is compact, σ(T ) =
{0}, and T has no eigenvalues.

Exercise 14.22. Consider again the operator T from Exercise 14.20.
Find T ∗ and |T | and prove that sn(T ) = 1

n+1
(so, in particular, T ∈ Kp

for p > 1, but T /∈ K1).

Exercise 14.23. Consider again the multiplication operator (Tx)n =
tnxn on `2 from Exercise 14.3. Show that T ∈ K1 if and only if

∑
|tn| <

∞.

Exercise 14.24. Let µ be a finite Borel measure on [0, 1], and let K :
[0, 1] × [0, 1] → C be a continuous function. Show that the operator
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T : L2([0, 1], µ)→ L2([0, 1], µ),

(Tf)(x) =

∫
[0,1]

K(x, y)f(y) dµ(y)

is compact.


