
11. Unbounded operators and relations

Many important operators on Hilbert spaces are not bounded. For
example, differential operators on L2(Rn) are never bounded. There-
fore, we now want to analyze general linear operators T on H, not
necessarily bounded or, equivalently, continuous. We also drop the as-
sumption that T is defined on all of H, so we now consider operators
T : D(T ) → H. The domain D(T ) is assumed to be a subspace of H.
Of course, if T ∈ B(H), then D(T ) = H. Conversely, the closed graph
theorem shows that if T is closed and D(T ) = H, then T ∈ B(H),
so closed unbounded operators are never defined on all of H. The vast
majority of the operators that occur in applications are closed or at
least have closed extensions, so the added flexibility of a domain D(T ),
not necessarily equal to the whole space, is a crucial part of the set-
up. More generally, the same argument, applied to the Hilbert space
H0 = D(T ), shows that a closed unbounded operator can never have
a closed domain. Typically, domains of unbounded operators will be
dense subspaces. For example, the formal operator Tf = f ′ on L2(R)
could be given the domain D(T ) = C∞0 (R).

The presence of domains is the main reason why unbounded opera-
tors can become quite awkward to deal with. It must always be taken
into account when manipulating operators. For example, if S, T are
linear operators on H, then we define sum and product as follows:

D(S + T ) := D(S) ∩D(T ) (S + T )x := Sx+ Tx,

D(ST ) := {x ∈ D(T ) : Tx ∈ D(S)} (ST )x := S(Tx)

Next, we want to define an adjoint operator T ∗. We will assume that
T is densely defined, that is, D(T ) = H. The following definition looks
natural:

D(T ∗) = {x ∈ H : There exists z = zx ∈ H such that

〈x, Ty〉 = 〈z, y〉 for all y ∈ D(T )},
T ∗x := z (x ∈ D(T ∗))

The assumption that T is densely defined makes sure that such a z, if
it exists at all, is unique, so this is well defined. Notice that we have
defined D(T ∗) as the largest set of vectors x for which T can be moved
over to the other argument in the scalar product in the expression
〈x, Ty〉. As before, we call T ∗ the adjoint operator (of T ).

Exercise 11.1. Prove that D(T ∗) is a subspace and that T ∗ is a line-
ar operator. Also, prove that if T ∈ B(H), then this new definition
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just recovers the operator T ∗ ∈ B(H) that was introduced earlier, in
Chapter 6.

One possible concern about this definition is the possibility of D(T ∗)
being rather small, and, indeed, it can happen that D(T ∗) = 0, and
then we don’t really get any operator at all. We’ll discuss this in more
detail later.

Definition 11.1. The graph of an operator T is the set G(T ) =
{(x, Tx) : x ∈ D(T )} ⊆ H ⊕H.

We have used this notion before, in the closed graph theorem. Notice
that G(T ) is in fact a subspace of H ⊕ H. Obviously, the operator,
including its domain, can be reconstructed from G(T ) ⊆ H ⊕ H: we
have

D(T ) = {x ∈ H : (x, y) ∈ G(T ) for some y ∈ H},
and then, given x ∈ D(T ), we can recover y = Tx as the unique y ∈ H
with (x, y) ∈ G(T ).

We now introduce a further generalization of the notion of an ope-
rator:

Definition 11.2. A relation (on H) is a linear subspace of H ⊕H.

More precisely, this generalizes the notion of an operator if we iden-
tify operators T with their graphs G(T ) ⊆ H⊕H. Relations have their
uses in certain situations but are much less common in mainstream
functional analysis than operators. We will not do much with them
here. They will be quite helpful for us anyway because certain facts
about operators actually become clearer in this more general setting.

We want to think about general relations T in much the same way
as operators. So if (x, y) ∈ T , we view y as an image of x under T . The
indefinite article is appropriate because an x ∈ H can now have several
images. So, for a quick summary, we can say that relations are the same
thing as operators, except that they can be multi-valued. With this in
mind, we now adapt some old definitions to the new setting and also
introduce some new ones.

Definition 11.3. Let T ⊆ H ⊕H be a relation on H. We define the
domain, range, null space (or kernel), and multi-valued part of T as
follows:

D(T ) = {x ∈ H : (x, y) ∈ T for some y ∈ H},
R(T ) = {y ∈ H : (x, y) ∈ T for some x ∈ H},
N(T ) = {x ∈ H : (x, 0) ∈ T },
T (0) = {y ∈ H : (0, y) ∈ T }
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The inverse of T is the relation T −1 = {(y, x) : (x, y) ∈ T }, and the
adjoint of T is defined as

T ∗ = {(u, v) : 〈v, x〉 = 〈u, y〉 for all (x, y) ∈ T }.
Finally, the closure T of a relation T is just that, the closure of the
subspace T ⊆ H ⊕H. We call a relation T closed if T = T .

Exercise 11.2. Show that T ∗ indeed is a relation (synonymously: a
subspace of H ⊕H) and that D(T ), R(T ), N(T ), T (0) are subspaces
of H.

Exercise 11.3. Find the adjoint T ∗ of the relation T = 0⊕H = {(0, y) :
y ∈ H}.

This definition of the relation adjoint reduces to the one we gave
earlier if T is a densely defined operator. As a first advantage of the
relations point of view, we now have a unique adjoint for any relation,
including non-densely defined operators. (Similarly, any relation has an
inverse and a closure.)

Of course, this adjoint T ∗ is a relation, not necessarily an operator,
so it is now natural to ask under what circumstances T ∗ will actually
be an operator.

Exercise 11.4. Show that a relation T ⊆ H ⊕H is an operator (more
precisely: T = G(T ) is the graph of an operator T ) if and only T (0) =
0.

Theorem 11.4. T ∗(0) = D(T )⊥

Proof. We have z ∈ D(T )⊥ if and only if 〈z, x〉 = 0 for all (x, y) ∈ T .
On the other hand, z ∈ T ∗(0) if and only if (0, z) ∈ T ∗, and by the
definition of the adjoint, this leads to the same condition 〈z, x〉 = 0 for
all (x, y) ∈ T . �

Corollary 11.5. The adjoint of a relation T is an operator if and only
if T is densely defined.

This confirms what was our first impression anyway, namely, that
we have to insist on dense domains if we want well defined adjoints in
an operator setting.

The definition of the property of being closed again reduces to the
one we gave earlier if T is an operator. The notion of a closure is new to
us, but of course it almost suggests itself. If we start with an operator
T , then we can of course pass to the associated relation T = G(T ) and

then take its closure T = G(T ). This, however, is not guaranteed to be
an operator in general (though usually it will be, the counterexamples
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are not natural as examples of operators), that is, it can happen that
T (0) 6= 0 even though T (0) = 0. (In particular, it is not true, in general,

that T (0) = T (0).)
So in the operator setting, if multi-valued relations are not admitted,

the corresponding definition becomes more awkward.

Definition 11.6. Let T be an operator on H. We call T closable if
its relation closure is an operator. In this case, we call the operator
associated with T = G(T ) the closure of T and denote it by T .

In other words, T is defined as the operator with graphG(T ) = G(T ).
As always, the sequence characterizations are often easier to work

with, so let me state these, too: First of all, for any relation T , we
have (x, y) ∈ T if and only if there are sequences (xn, yn) ∈ T such
that xn → x, yn → y. In particular, y ∈ T (0) if and only if there are
sequences xn → 0, yn → y with (xn, yn) ∈ T .

So the operator T is closable if and only if the conditions xn ∈ D(T ),
xn → 0, Txn → y for some y ∈ H imply that y = 0. If T is continuous,
then the first two of these three conditions already imply that Txn → 0,
so a bounded operator is always closable. In general, if T is closable,
then

D(T ) = {x ∈ H : There exists a sequence xn ∈ D(T ) such that

xn → x, Txn → y for some y ∈ H}.

If x ∈ D(T ) and y is as above, then Tx = y. The condition that T is
closable makes sure that this y is uniquely determined by x, so this is
well defined.

Exercise 11.5. Show that a bounded operator T : D(T )→ H is closed
if and only if D(T ) is a closed subspace of H.

Occasionally, the following reformulation is also useful. Call an ope-
rator S an extension of T if G(S) ⊇ G(T ). Equivalently, this means
that D(S) ⊇ D(T ) and Sx = Tx for all x ∈ D(T ). In this case, we
also write S ⊇ T (this notation goes well with our general convention
to identify operators with their graphs in a relations setting).

Exercise 11.6. Prove that T is closable if and only if T has a closed
(operator) extension. If T is closable, then T is the smallest closed
extension of T .

Theorem 11.7. Let T be a relation. Then: (a) T ∗ is closed; (b) T ∗∗ =

T ; (c) T ∗ = T ∗.
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Proof. All three parts follow from the fact that we can reinterpret the
adjoint as essentially an orthogonal complement. More precisely, let
J ∈ B(H ⊕ H) be the unitary map J(x, y) = (−y, x). Then T ∗ =
(JT )⊥. Since an orthogonal complement is always closed, this gives
part (a).

Exercise 11.7. Show that for any set A ⊆ H ⊕ H, we have J(A⊥) =
(JA)⊥. In fact, you could also establish the general fact that if U is a
unitary map on a Hilbert space K, then UA⊥ = (UA)⊥ for all A ⊆ K.

From this Exercise, we obtain

T ∗∗ = (JT ∗)⊥ = (J(JT )⊥)⊥ = (JJT ⊥)⊥ = T ⊥⊥ = T ,

and this is part (b).

It then also follows that T ∗ = T ∗∗∗ = T ∗, but T ∗ is already closed,
by part (a), so this equals T ∗, as claimed in part (c). �

Here’s another useful fact, which generalizes Theorem 6.2.

Theorem 11.8. N(T ∗) = R(T )⊥

Proof. We have z ∈ N(T ∗) if and only if (z, 0) ∈ T ∗ and this happens
if and only if 〈z, y〉 = 0 for all (x, y) ∈ T , but this is the condition for
z to lie in R(T )⊥. �

Exercise 11.8. Let S, T be relations with S ⊆ T . Show that then
T ∗ ⊆ S∗.

Theorem 11.9. Let T be an operator. Then T is closable if and only
if T ∗ is densely defined.

Proof. As we discussed earlier, T is closable if and only if T (0) = 0. By
Theorems 11.7(b) and 11.4, this space equals T ∗∗(0) = D(T ∗)⊥. �

We can construct non-closable operators most easily in an abstract
fashion:

Exercise 11.9. Fix a dense subspace D0 $ H and a vector x /∈ D0. Let
D(T ) = L(x)uD0, T (cx+ y) = cx (where c ∈ C, y ∈ D0). Show that
T is not closable.

Exercise 11.10. Consider again the operator T from the previous Exer-
cise. Observe first of all that T is densely defined, so T ∗ is an operator
by Corollary 11.5. Show that D(T ∗) = {x}⊥, which is not dense (this
again implies that T is not closable, by Theorem 11.9). Conclude also
T ∗y = 0 for all y ∈ D(T ∗).
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Exercise 11.11. Let T be a relation. Prove the following: (a) If N(T ) is
dense, then T ∗ = D(T ∗)⊕0; put differently, v = 0 for all (u, v) ∈ T ∗ (in
a concrete setting, you already encountered this situation in Exercise
11.10).
(b) If R(T ) is also dense, then T ∗ = 0⊕ 0 = {(0, 0)}.
Exercise 11.12. Here’s a more spectacular example of an operator with
non-densely defined T ∗. Let H = L2(−1, 1),

D(T ) =
{
f ∈ C∞(−1, 1) ∩ L2(−1, 1) :

∣∣f (n)(0)
∣∣ ≤ Cf2

−nn! (n ≥ 0)
}

(Tf)(x) =
∞∑
n=0

f (n)(0)

n!
xn;

so T sends f to its Taylor series, and the domain only contains functions
for which this series converges uniformly and absolutely. Show that T
is a densely defined operator with D(T ∗) = 0.

Suggestion: Show that N(T ) and R(T ) are dense, and then apply
the result of the previous Exercise.

We call a relation T self-adjoint if T ∗ = T and symmetric if T ⊆ T ∗.
Exercise 11.13. Show that self-adjoint relations are closed. Then show
that if T is symmetric, so is T .

Symmetric or self-adjoint relations need not be densely defined. In-
deed, you showed in Exercise 11.3 that T = 0⊕H is self-adjoint, and
here D(T ) = 0. However, if we want to deal with operators exclusi-
vely, we must insist that T is densely defined, or else T ∗ would not
be an operator (Corollary 11.5). Therefore, the operator version of the
definition we just gave goes as follows:

Definition 11.10. We call an operator T symmetric if T is densely
defined and T ⊆ T ∗. If, in addition, T = T ∗, then we call T self-adjoint.

More explicitly, the symmetry of a densely defined T is equivalent
to the condition 〈x, Ty〉 = 〈Tx, y〉 for all x, y ∈ D(T ). If, in addition,
we also have D(T ) = D(T ∗), then T is self-adjoint.

Somewhat informally, we can say that symmetry is the familiar pro-
perty “T can go anywhere in a scalar product”, whereas self-adjointness
is a more delicate property and involves the domains of T, T ∗ more ex-
plicitly.

Exercise 11.14. Let T be a symmetric operator. Show that T is closable
and that T is also symmetric.

Example 11.1. Let H = L2(0, 1) and define Tf = if ′ on D(T ) =
C∞0 (0, 1), the smooth functions on (0, 1) whose support is a compact
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subset of (0, 1). Since these are dense in L2(0, 1), T is densely defined.
It is easy to check that T is symmetric: an integration by parts shows
that if f, g ∈ C∞0 (0, 1), then

〈f, Tg〉 =

∫ 1

0

f(x)ig′(x) dx = −i
∫ 1

0

f ′(x)g(x) dx = 〈Tf, g〉.

However, T is not self-adjoint. The above calculation in fact shows that
if f is an arbitrary C1 function, then we still have 〈f, Tg〉 = 〈if ′, g〉, so
D(T ∗) is strictly larger than C∞0 = D(T ).

Let us try to find T ∗ explicitly. First of all, if f ∈ AC[0, 1], then
the integration by parts calculation from above still goes through. See
Folland, Real Analysis, Theorem 3.36 and Exercise 3.5.35. The space
AC[0, 1] of absolutely continuous (on [0, 1]) functions can be defined
in various ways; here is one possible version: f ∈ AC[0, 1] if and on-
ly if there exists h ∈ L1(0, 1) such that f(x) = f(0) +

∫ x
0
h(t) dt for

all x ∈ [0, 1]. Absolutely continuous functions are differentiable almost
everywhere, and if h is as above, then f ′ = h almost everywhere. Plea-
se see Folland, Section 3.5 for (much) more on absolutely continuous
functions.

We conclude that f ∈ D(T ∗) if f ∈ AC[0, 1] and f ′ ∈ L2(0, 1), and
T ∗f = if ′ for these f . Conversely, assume that f ∈ D(T ∗). This means
that there exists h ∈ L2(0, 1) such that

(11.1) i

∫ 1

0

f(x)g′(x) dx =

∫ 1

0

h(x)g(x) dx

for all g ∈ C∞0 (0, 1). Now one possible interpretation of (11.1) is: the
distributional derivative of f equals −ih. In particular, f ′ ∈ D′(0, 1)
is an integrable function (since L2(0, 1) ⊆ L1(0, 1)). This implies that
f ∈ AC[0, 1] and h = if ′, so

(11.2) D(T ∗) = {f ∈ AC[0, 1] : f ′ ∈ L2(0, 1)}, T ∗f = if ′.

If you are not familiar with the distributional characterization of abso-
lute continuity, then the use of distributions can be avoided. Here’s an
alternative argument. Suppose that f and h are as in (11.1), and let

(11.3) F (x) = f(x) + i

∫ x

0

h(t) dt.

Clearly, F ∈ L2(0, 1). A calculation using the Fubini-Tonelli Theorem
and (11.1) shows that 〈F, g′〉 = 0 for all g ∈ C∞0 (0, 1). Fix g0 ∈ C∞0 (0, 1)
with

∫
g0 = 1. Also, observe that h ∈ C∞0 (0, 1) is of the form h = g′

for some g ∈ C∞0 (0, 1) if (and only if, but this is not needed here)∫
h = 0, so we can now rephrase and say that 〈F, g − cg0〉 = 0 for all

g ∈ C∞0 (0, 1), where c =
∫
g = 〈1, g〉. Or, put differently, 〈F−c0, g〉 = 0
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for all g ∈ C∞0 (0, 1), and here c0 = 〈g0, F 〉 ∈ C is a constant (function).
However, C∞0 (0, 1)⊥ = 0, because C∞0 is dense, so F = c0. Now (11.3)
again confirms that (11.2) holds.

In particular, T ∗ is densely defined, so T is closable. What is its
closure?

Exercise 11.15. Use similar arguments to show that

D(T ∗∗) = {f ∈ AC[0, 1] : f ′ ∈ L2(0, 1), f(0) = f(1) = 0},
T ∗∗f = if ′.

Recall also that AC[0, 1] functions are continuous on [0, 1], so it makes
sense to evaluate these at 0 and 1.

Let S = T = T ∗∗. Then S is closed and symmetric because S∗ = T ∗

and thus S∗ ⊇ S by (11.2). However, S is not self-adjoint, as D(S∗)
is strictly larger than D(S). When we make the domain larger (but in
such a way that we still have a restriction of S∗), the domain of the
adjoint operator will decrease, so perhaps self-adjoint operators can be
obtained in this way. It is clear that D(S∗) is too large; in fact, S∗ is
not even symmetric because S∗∗ = S 6⊇ S∗. However, the intermediate
domains

D(Sa) = {f ∈ AC[0, 1] : f(1) = eiaf(0)}, Saf = if ′

work: Sa is self-adjoint for every a ∈ [0, 2π) (we don’t want to prove this
here, but you can try to give a proof that is modeled on the discussion
above). Notice that S ⊆ Sa ⊆ S∗ for all a.

This situation is typical. It is often easy to find domains on which
operators are symmetric, but to build self-adjoint operators, the do-
mains must be chosen very carefully. The von Neumann theory provi-
des a systematic approach to these issues; we will not discuss it here.
Instead, we will prove the following abstract criterion.

Theorem 11.11. Let T be a symmetric operator, and let z ∈ C \ R.
Then the following statements are equivalent:
(a) T is self-adjoint;
(b) T is closed and N(T ∗ − z) = N(T ∗ − z) = 0;
(c) R(T − z) = R(T − z) = H.

Here, as usual, T − z really means T − zI, with Ix = x being the
identity operator (and the multiplicative identity e = I of the C∗-
algebra B(H)). For such sums (or differences) of an operator with
a bounded operator, the domains don’t make much trouble: we have
D(T − z) = D(T ) ∩D(zI) = D(T ) ∩H = D(T ).
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We will also make use of the following fact: If T is a densely defined
operator and z ∈ C, then (T − z)∗ = T ∗ − z.

Exercise 11.16. Prove this.

Proof. (a) =⇒ (b): T is closed because T = T ∗ and adjoints are always
closed (Theorem 11.7). Suppose that x ∈ N(T ∗− z) = N(T − z). Then

z〈x, x〉 = 〈Tx, x〉 = 〈x, Tx〉 = z〈x, x〉,
so x = 0. Of course, a similar argument works for N(T ∗ + z), so we
have established (b).

(b) =⇒ (c): By Theorem 11.8, R(T − z)⊥ = N(T ∗ − z) = 0, so
R(T − z) is dense. So it now suffices to show that this space is closed.
Let yn ∈ R(T − z), so yn = (T − z)xn with xn ∈ D(T ), and suppose
that yn → y. Write z = a+ ib; by assumption, b 6= 0. If u ∈ D(T ), then

‖(T − z)u‖2 = 〈(T − a− ib)u, (T − a− ib)u〉
= ‖(T − a)u‖2 + b2‖u‖2

because T ∗ ⊇ T , so 〈u, (T − a)u〉 = 〈(T − a)u, u〉. It follows that

‖u‖ ≤ 1

|b|
‖(T − z)u‖,

and by applying this to u = xm − xn, we see that xn is a Cauchy
sequence, so x = limxn exists. Since Txn also converges, to y + zx,
and T is closed, we conclude that x ∈ D(T ) and Tx = y + zx or
y = (T − z)x ∈ R(T − z), as desired. An analogous argument handles
R(T − z).

(c) =⇒ (a): Let x ∈ D(T ∗). By hypothesis, we can find a y ∈ D(T )
with (T − z)y = (T ∗ − z)x. Since T ⊆ T ∗, we have x − y ∈ N(T ∗ −
z). However, N(T ∗ − z) = R(T − z)⊥ = 0 (by Theorem 11.8 and
assumption), so x = y ∈ D(T ). We have shown that D(T ∗) ⊆ D(T ),
so D(T ∗) = D(T ) since T is symmetric. �

Definition 11.12. Let T be a closed operator. Define

ρ(T ) = {z ∈ C : N(T − z) = 0, R(T − z) = H}
σ(T ) = C \ ρ(T ).

We call ρ(T ) the resolvent set and σ(T ) the spectrum of T .

Notice that if z ∈ ρ(T ), then (T − z)−1 ∈ B(H). This follows from
the closed graph theorem because (T − z)−1 is a closed operator that
is defined everywhere. Here we use the fact that an injective operator
S is closed if and only if S−1 is closed; in fact, this is obvious because
G(S) = {(x, Sx) : x ∈ D(S)} and G(S−1) = {(Sx, x) : x ∈ D(S)}.
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Conversely, if T − z is invertible as a map and (T − z)−1 ∈ B(H), then
obviously z ∈ ρ(T ).

These remarks confirm that the definition is natural. The resolvent
set consists of those z ∈ C for which T − z is invertible as a map
and the inverse map lies in B(H), and this is a direct generalization of
our earlier definition for bounded operators. As before, we call R(z) =
(T − z)−1 (z ∈ ρ(T )) the resolvent of T .

Proposition 11.13. ρ(T ) is an open subset of C.

This is proved as in the case of bounded operators. If T − z0 is
invertible in B(H), then we can write T −z = (T −z0)(1+(z−z0)(T −
z0)−1) (as usual, the domains require constant attention, but they do
not cause any trouble in this formula) and then use the Neumann series
to show that the second factor is invertible in B(H) if |z− z0| is small.
See our discussion in Chapter 7, especially Corollary 7.5 and Theorem
7.7(a).

Proposition 11.14 (First resolvent identity). Let T be a closed ope-
rator and w, z ∈ ρ(T ). Then

R(w)−R(z) = (w − z)R(w)R(z);

in particular, R(w) and R(z) commute.

Proof. We have

(w − z)R(w)R(z) = R(w)(T − z − (T − w))R(z) = R(w)−R(z),

which appears to verify the claim. However, this is a formal calculation
and we also need to take the domains into account. More precisely, the
domain of R(w)((T −z)− (T −w))R(z) is the space of those x ∈ H for
which R(z)x ∈ D(T ), but, fortunately, this is all of H because R(z),
being the inverse of T − z, has range D(T − z) = D(T ). So the above
calculation is sound. �

Exercise 11.17. Here’s an illustration of the kind of trouble we might
run into if we let our guard down and just manipulate formally, without
watching domains: Show that RS + RT ⊆ R(S + T ), and give an
example (perhaps an easy abstract example) where the two sides don’t
have the same domain.

Corollary 11.15. Let T be self-adjoint. Then σ(T ) ⊆ R.

Proof. By combining (b) and (c) of Theorem 11.11, we see that N(T −
z) = 0, R(T − z) = H for every z /∈ R. �

The following example once again demonstrates the dramatic effect
that domain issues can have.
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Example 11.2. Consider again the operator f 7→ if ′ on L2(0, 1), on the
following domains:

D(S) = {f ∈ AC[0, 1] : f ′ ∈ L2(0, 1)},
D(T ) = {f ∈ D(S) : f(0) = 0}

So S is the operator T ∗ from Example 11.1.

Exercise 11.18. Prove that both operators are closed.

I claim that
σ(S) = C, σ(T ) = ∅.

The claim on σ(S) is very easy to confirm. Just notice that ez(x) =
e−izx ∈ D(S) for all z ∈ C and (S − z)ez = 0.

To find σ(T ), fix z ∈ C and let

(Rzf)(x) = −ie−izx
∫ x

0

eiztf(t) dt.

This is defined for all f ∈ L2(0, 1), and in fact (Rzf)(x) is an absolutely
continuous function of x ∈ [0, 1]. In particular, Rzf ∈ L2(0, 1). An easy
calculation shows that

(Rzf)′(x) = −iz(Rzf)(x)− if(x)

(almost everywhere). This implies that (Rzf)′ ∈ L2(0, 1), and since
clearly (Rzf)(0) = 0, it follows that Rzf ∈ D(T ). Moreover, (T −
z)Rz = 1 (note that the observations about Rz mapping to D(T ) are
needed here to be able to define the left-hand side on all of H), so
R(T − z) = H. Similar arguments (use an integration by parts!) show
that Rz(T − z)f = f for all f ∈ D(T ), so we also obtain N(T − z) = 0
(since Rz0 = 0). Putting things together, we see that z ∈ ρ(T ), and
z ∈ C was arbitrary here.

We want to formulate and prove the Spectral Theorem for unbounded
self-adjoint operators also. From a purely formal point of view, things
look very familiar:

Theorem 11.16 (The Spectral Theorem for self-adjoint operators).
Let T be a self-adjoint operator. Then there exists a unique spectral
resolution E (on the Borel sets of σ(T )) such that

(11.4) T =

∫
σ(T )

t dE(t).

However, we must tread very carefully here. If T is unbounded, then
σ(T ) could be an unbounded subset of R (in fact, as we will prove later,
σ(T ) is never bounded unless T ∈ B(H)), and thus (11.4) involves a



Unbounded operators 135

new kind of integral that we haven’t even defined yet (the integrand is
an unbounded function).

Clearly, we first need to address this issue, and we will do this in an
abstract setting. So let E : Ω → B(H) be a resolution of the identity
on an arbitrary space (Ω,M). We want to extend our earlier definition
of
∫

Ω
f dE to unbounded measurable functions f . If f : Ω→ C is such

an arbitrary measurable function, we let

Df =

{
x ∈ H :

∫
Ω

|f(t)|2 d‖E(t)x‖2 <∞
}
.

As a preliminary, we observe the following:

Lemma 11.17. Df is a dense subspace of H. If x ∈ Df and y ∈ H,
then

(11.5)

∫
Ω

|f | d|µy,x| ≤ ‖y‖
(∫

Ω

|f |2 dµx,x
)1/2

.

Here, we use the same notation as in Chapter 10: µy,x denotes the
complex measure µy,x(ω) = 〈y, E(ω)x〉. We sometimes write dµy,x =
d〈y, Ex〉 instead.

Proof. Suppose that z = x + y, with x, y ∈ Df . Then, for all ω ∈ M,
we have

‖E(ω)z‖2 ≤ (‖E(ω)x‖+ ‖E(ω)y‖)2 ≤ 2‖E(ω)x‖2 + 2‖E(ω)y‖2.

This says that µz,z(ω) ≤ 2µx,x(ω) + 2µy,y(ω), so z ∈ Df . If c ∈ C and
x ∈ Df , then µcx,cx(ω) = |c|2µx,x(ω), so cx ∈ Df also.

To prove that Df is dense, put ωn = {t ∈ Ω : |f(t)| < n}. If y ∈
R(E(ωn)), then µy,y(ω

c
n) = 0 (why?), so∫

Ω

|f |2 dµy,y =

∫
ωn

|f |2 dµy,y ≤ n2‖y‖2 <∞,

and thus y ∈ Df . I now claim that E(ωn)x → x for arbitrary x ∈ H.
To verify this, notice that ‖x − E(ωn)x‖2 = µx,x(ω

c
n). This goes to

zero because the sets ωcn decrease to the empty set: ωc1 ⊇ ωc2 ⊇ . . .,⋂
ωcn = ∅ (you can also apply Monotone Convergence to the functions

1− χωc
n

= χωn).
We first prove (11.5) for bounded f . Write d|µy,x| = u dµy,x, with
|u| = 1. Then∫

Ω

|f | d|µy,x| =
∫

Ω

u|f | dµy,x = 〈y,Ψ(u|f |)x〉

≤ ‖y‖ ‖Ψ(u|f |)x‖ = ‖y‖
(∫

Ω

|f |2 dµx,x
)1/2

,
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as claimed. Here, we make use of the notation Ψ(g) =
∫
g dE (as in

Chapter 10).
For general measurable f , we can apply this to fn = χ{|f |<n}f and use

Monotone Convergence to pass to the limit on both sides of (11.5). �

Theorem 11.18. (a) There exists a unique linear operator Tf : H →
H with D(Tf ) = Df and

(11.6) 〈y, Tfx〉 =

∫
Ω

f(t) dµy,x(t)

for all x ∈ Df , y ∈ H.
(b) If x ∈ Df , then

‖Tfx‖2 =

∫
Ω

|f(t)|2 dµx,x(t).

(c) TfTg ⊆ Tfg and D(TfTg) = Dg ∩Dfg;
(d) T ∗f = Tf ; in particular, Tf is closed.

This allows us to define
∫

Ω
f dE := Tf . Since we are again using

(11.6) as the defining property of this operator, it is clear that this
reproduces our earlier definition from Chapter 10 if f ∈ L∞(Ω, E).
Here, we also use the observation that Df = H if f is (essentially)
bounded. Theorem 11.19 below will discuss these issues again.

The map f 7→ Tf has similar properties as before, but, as usual, the
domains now need to be watched constantly. Part (c) is the new version
of multiplicativity, and it can also be proved that Tf + Tg ⊆ Tf+g and
cTf = Tcf (if c 6= 0).

Note also that (11.5) from Lemma 11.17 makes sure that the right-
hand side of (11.6) is well defined for x ∈ Df .

Proof. (a) Uniqueness is clear because (11.6) determines Tfx. To prove

existence, we fix x ∈ Df and consider the map y 7→
∫
f dµy,x. This map

is a linear functional, and by (11.5), it is also bounded, of norm at most(∫
|f |2 dµx,x

)1/2
. Hence the Riesz Representation Theorem provides a

vector z = zx ∈ H, of at most this norm, such that
∫
f dµy,x = 〈y, z〉.

Let Tfx = z. Since µy,x depends linearly on x, this defines a linear map
Tf : Df → H.

(b) As just observed,

(11.7) ‖Tfx‖2 ≤
∫

Ω

|f |2 dµx,x (x ∈ Df ).
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Let fn again denote the truncated function

fn(t) =

{
f(t) |f(t)| < n

0 |f(t)| ≥ n
.

Then Df−fn = Df , and now (11.7) together with Dominated Conver-
gence shows that ‖Tfx− Tfnx‖ = ‖Tf−fnx‖ → 0. Since fn is bounded,
the asserted identity holds for fn, and now another passage to the limit
yields the claim for f as well.

(c) We first deal with the case when f is bounded. Then Dg ⊆ Dfg.
If x ∈ Dg and y ∈ H, then

〈y, TfTgx〉 = 〈Tfy, Tgx〉 =

∫
Ω

g d〈Tfy, Ex〉,

〈y, Tfgx〉 =

∫
Ω

fg d〈y, Ex〉.

If g is also bounded, then we know that TfTg = Tfg (Theorem 10.3),
so the two integrals are also equal to each other in this case. Now
the Dominated Convergence Theorem lets us extend this equality to
general measurable functions g (by applying the usual technique of
truncating g and passing to the limit), so

(11.8) TfTgx = Tfgx (x ∈ Dg).

Since D(TfTg) = Dg if f is bounded, this is what we claimed in the
Theorem, for bounded f .

To remove this restriction, first of all notice that if f is bounded and
x ∈ Dg, then

(11.9)

∫
Ω

|f |2 d〈Tgx,ETgx〉 =

∫
Ω

|fg|2 d〈x,Ex〉.

The usual truncation plus limit trick shows that this identity in fact
holds for all measurable f . By definition, D(TfTg) consists of those
x ∈ Dg for which Tgx ∈ Df . By (11.9), this set coincides with Dg∩Dfg,
as claimed.

If x is from this set, define, as usual, bounded truncations fn. Then,
by the argument discussed in the proof of part (b), TfnTgx → TfTgx,
Tfngx → Tfgx, so we can use (11.8) with fn in place of f (recall that
(11.8) was only derived for bounded f !) and pass to the limit to obtain
the full claim.

(d) If x ∈ Df and y ∈ Df = Df , then

〈y, Tfx〉 =

∫
Ω

f dµy,x =

∫
Ω

f dµx,y = 〈x, Tfy〉 = 〈Tfy, x〉.
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This says that y ∈ D(T ∗f ) and T ∗f ⊇ Tf .
Conversely, suppose that y ∈ D(T ∗f ). Let again ωn = {t ∈ Ω :

|f(t)| < n} and fn = χωnf . I claim that

(11.10) Tfny = E(ωn)T ∗f y.

Indeed, fn is bounded, so, for arbitrary x ∈ H, we have

〈Tfny, x〉 = 〈y, Tfnx〉 =

∫
Ω

fn dµy,x =

∫
ωn

f dµy,x,

〈E(ωn)T ∗f y, x〉 = 〈y, TfE(ωn)x〉 =

∫
Ω

f dµy,E(ωn)x.

Now µy,E(ωn)x(ω) = µy,x(ω ∩ ωn), so the two integrals are equal to
each other. This property of µ also shows that E(ωn)x ∈ Df , so there
are no problems with the domains in the second line of the displayed
equations.

Now (11.10) implies that∫
Ω

|fn|2 dµy,y = ‖E(ωn)T ∗f y‖2 ≤ ‖T ∗f y‖2,

and the Monotone Convergence Theorem lets us conclude that y ∈ Df ,
as desired.

Finally, Tf = T ∗
f

is closed by Theorem 11.7. �

Theorem 11.19. Let f : Ω → C be a measurable function. Then
D(Tf ) = H if and only if f is essentially bounded.

Proof. Obviously, Df = H if f is (essentially) bounded. Conversely, if
Df = H, then Tf ∈ B(H) by the Closed Graph Theorem. Let ωn =
{t ∈ Ω : |f(t)| ≥ n}. Theorem 11.18(b) shows that ‖Tfx‖ ≥ n‖x‖ for
all x ∈ R(E(ωn)), so we must have E(ωn) = 0 for all large n. �

We have clarified the precise meaning of this new version of the
Spectral Theorem (for unbounded self-adjoint operators), and we are
also in a position to prove it now.

Proof of Theorem 11.16. The idea is quite simple, but the technical
details are perhaps slightly unpleasant and so I will be a bit light on
the details here. If T is self-adjoint, then i /∈ σ(T ), by Corollary 11.15,
so R = (T − i)−1 ∈ B(H).

Exercise 11.19. Prove that R∗ = (T + i)−1.

Moreover, by Exercise 11.19 and Proposition 11.14, RR∗ = R∗R, so
R is a bounded normal operator.
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By the Spectral Theorem for these (Theorem 10.5),

(T − i)−1 =

∫
σ(R)

z dF (z)

for some spectral resolution F . We want to “change variables” from z
to t, where 1/(t − i) = z. So let ϕ(t) = 1/(t − i) and put E(M) =
F (ϕ(M \ {i})). (We remove the point i here to have a meaningful
definition, but there really is no issue at all; see the comment in part
(b) of the following Exercise.)

Exercise 11.20. (a) Show that this defines a new resolution of the iden-
tity E.
(b) Show that

∫
z dF (z) =

∫
1
t−i dE(t). Remark: Notice that F , being

the spectral resolution of a bounded operator, is supported by a com-
pact set, so there is a disk D about i with E(D) = 0, and thus the
integrand 1/(t−i) is an essentially bounded function and

∫
dE/(t−i) ∈

B(H), as required.

We of course expect that T − i = R−1 =
∫

(t− i) dE, so T =
∫
t dE,

but, as always, it is good practice to be suspicious about these formal
manipulations, and we will again need to address domain issues here.
Moving on to the rigorous discussion, we let S =

∫
t dE(t) and notice

that Theorem 11.18(c) implies that (S − i)R = 1. Since R maps onto
D(T ), this identity in particular shows that D(S) ⊇ D(T ). Moreover,
if x ∈ D(T ) and thus x = Ry for some y ∈ H, then Sx = SRy =
y + iRy = TRy = Tx. Hence S ⊇ T , and by taking adjoints, we see
that in fact S∗ ⊆ T ⊆ S; in particular, S∗ =

∫
t dE(t) is a symmetric

operator (recall that S is closed, so S∗∗ = S).

Exercise 11.21. Let E be a resolution of the identity on Ω, and let
f : Ω → C be a measurable function. Assume that A =

∫
Ω
f dE is a

symmetric operator. Show that then A is self-adjoint.
Hint: Show that E({t ∈ Ω : f(t) /∈ R}) = 0 if A is symmetric.

So it now follows that S = T , and this gives a representation of the
type T =

∫
C t dE(t). We must also show that E is supported by σ(T ).

We leave this final touch to the reader; the argument is quite similar
to analogous discussions from Chapter 10.

Exercise 11.22. Provide details, along the following lines: First of all,
argue that it suffices to show that if E(Br(z)) 6= 0 for all r > 0, then
z ∈ σ(T ). Then establish this property, by constructing a sequence
xn ∈ D(T ) with ‖xn‖ = 1 and (T − z)xn → 0.



140 Christian Remling

Finally, we sketch a possible proof of the uniqueness assertion: We
can, conversely, go from a representation T =

∫
t dE(t) of T to a re-

presentation (T − i)−1 =
∫
z dF (z) of the resolvent, by a change of

variables again. Moreover, it is possible to recover E from F . Since we
know that F is unique (Theorem 10.5), E must be unique, too. �

From the Spectral Theorem, we again obtain a functional calculus for
self-adjoint operators. More precisely, if T =

∫
t dE(t) and f : σ(T )→

C is measurable, then we put f(T ) =
∫
f(t) dE(t). Note that this is

well defined even if both f and T are unbounded. If f is (essentially)
bounded, then f(T ) ∈ B(H), whether or not T is bounded. In fact, it
was exactly this property of self-adjoint operators (with f(t) = 1/(t−i))
that made our proof of the Spectral Theorem work.

Unbounded self-adjoint operators also have spectral representations,
that is, they are unitarily equivalent to multiplication by the variable
on a sum of L2(R, dρ) spaces, but we will not develop this result here.

Exercise 11.23. Let ρ be a finite (positive) Borel measure on R. Let

D(M) = {f ∈ L2(R, dρ) : tf(t) ∈ L2(R, dρ)},
(Mf)(t) = tf(t).

Prove that M is a self-adjoint operator on L2(R, dρ).

Theorem 11.20. Let T be a self-adjoint operator. Then T ∈ B(H) if
and only if σ(T ) is a bounded set.

Exercise 11.24. Prove this. One direction is of course already known to
us, and the other direction follows quickly from the Spectral Theorem
and Theorem 11.18(b).

One may also wonder if self-adjoint relations (rather than operators)
have a similar spectral theory. This is clarified by the following result.

Theorem 11.21. Let T be a self-adjoint relation on H. Then H =
H1 ⊕ H2, with H1 = D(T ), H2 = T (0), and, correspondingly, T =
T1 ⊕ T2, with Tj = T ∩ (Hj ⊕Hj). More precisely, T1(0) = 0, so T1 is
a self-adjoint operator on H1, and T2 = 0⊕H2.

Exercise 11.25. Let Tj, j = 1, 2, be a relation on Hj. Suppose that
H = H1 ⊕ H2 and T = T1 ⊕ T2. Show that then T ∗ = T ∗1 ⊕ T ∗2 . In
particular, T is self-adjoint if and only if T1 and T2 are.

So a self-adjoint relation is always a self-adjoint operator on the
smaller Hilbert space H1 = D(T ), and it is purely multi-valued on the
orthogonal complement H2. Or, put differently, if we divide out the
multi-valued part H2, then we obtain a self-adjoint operator.
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Proof. Theorem 11.4 shows that T (0) = D(T )⊥, so H1, H2 are indeed
orthogonal complements of one another. Moreover, it is clear that T1⊕
T2 ⊆ T . Conversely, if (x, y) ∈ T , then, with z = PH2y, we have
y − z = (1 − PH2)y = PH1y ∈ H1, and since z ∈ T (0), it is also true
that (x, y−z) ∈ T and in fact (x, y−z) ∈ T1 since also x ∈ D(T ) ⊆ H1.
Thus (x, y) = (x, y−z)+(0, z) is a decomposition of the required type.

The remaining statements follow from the fact that H2 = T (0). �

Exercise 11.26. Let T be a linear operator. Let, for x, y ∈ D(T ),

[x, y] = 〈x, y〉+ 〈Tx, Ty〉.
Prove that this defines a new scalar product on D(T ). Then show that
T is closed if and only if D(T ) is complete with respect to [·, ·].

Exercise 11.27. Prove that the operator T from Example 11.1 is not
bounded. Do this directly, by constructing functions fn ∈ C∞0 (0, 1)
with ‖fn‖ = 1, ‖f ′n‖ → ∞.

Exercise 11.28. Let T be a self-adjoint operator and let M ⊆ H be
a closed subspace. We call M a reducing subspace if D(T ) = (M ∩
D(T )) + (M⊥ ∩D(T )) and both M and M⊥ are invariant under T : if
x ∈ M ∩D(T ), then Tx ∈ M , and similarly on M⊥ ∩D(T ). Roughly
speaking, these conditions say that T can be split into two parts, one
on M and a second part on M⊥.

(a) Show that M is reducing if and only if PT ⊆ TP , where P
denotes the projection onto M .
(b) Let E be the spectral resolution of T . Show that R(E(B)) is a
reducing subspace for every Borel set B ⊆ R. Hint: Theorem 11.18(c)

Exercise 11.29. Show that if T is self-adjoint, z /∈ σ(T ), and f(t) =
1/(t− z), then f(T ) = R(z) (as expected).

Exercise 11.30. Similarly, show that if f(t) = t2, then f(T ) agrees with
the direct definition of T 2 = TT that was discussed at the beginning
of this chapter. (More generally, if f = p is a polynomial, then the
functional calculus just reproduces the direct definition of p(T ).)


