
6. Galois theory

6.1. Introduction. The basic idea of Galois theory is to study field
extensions by relating them to their automorphism groups. Recall that
an F -automorphism of E/F is defined as an automorphism ϕ : E →
E that fixes F pointwise, that is, ϕ(a) = a for all a ∈ F . The F -
automorphisms of E/F form a group under composition (you can think
of this as a subgroup of S(E)). We call this the Galois group of E over
F and denote it by

Gal(E/F ) = {ϕ : E → E : ϕ is an F -automorphism }.

Now consider an intermediate field F ⊆ L ⊆ E; I’ll write E/L/F to
refer to this situation, but should issue a warning that this notation is
non-standard. Then we can similarly consider the L-automorphisms

Gal(E/L) = {ϕ : E → E : ϕ automorphism, ϕ(a) = a for all a ∈ L}.

This is a subgroup of Gal(E/F ) since any such ϕ in particular leaves
F ⊆ L invariant. Conversely, if we are given a subgroupH ⊆ Gal(E/F ),
then we can introduce

Inv(H) = {a ∈ E : ϕ(a) = a for all ϕ ∈ H}.

We call Inv(H) the fixed field of H. This is a field because if a, b ∈
Inv(H) and ϕ ∈ H, then for example ϕ(a − b) = ϕ(a) − ϕ(b) = a −
b, so a − b ∈ Inv(H), and similarly ab−1 ∈ Inv(H) if b 6= 0. It is
also clear that Inv(H) ⊇ F because the elements of F are in fact
fixed by all automorphisms from the bigger group Gal(E/F ) ⊇ H. So
E/Inv(H)/F , and Inv(H) is an intermediate field.

Exercise 6.1. More generally, let S ⊆ Gal(E/F ) be an arbitrary subset.
Show that Inv(S) := {a ∈ E : ϕ(a) = a for all ϕ ∈ S} is still an
intermediate field. Then show that Inv(S) = Inv(H), with H = 〈S〉,
the subgroup generated by S, so this doesn’t really give anything new.

So given a field extension E/F , we can pass from an intermediate
field L to the subgroup Gal(E/L) of Gal(E/F ), and also conversely
from a subgroup H to the intermediate field Inv(H). We will be espe-
cially interested in situations where these two operations Gal, Inv are
inverses of each other.

From the definitions it is only clear that if E/L/F is a field extension
and H ⊆ Gal(E/F ) is a subgroup of the Galois group, then

(6.1) Inv Gal(E/L) ⊇ L, Gal(E/InvH) ⊇ H.

Exercise 6.2. Prove this please.
118
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Definition 6.1. We call an algebraic extension E/F a Galois extension
(equivalently, we say that E is Galois over F ) if Inv Gal(E/F ) = F .

Much of the foundational material of this section also works for not
necessarily algebraic extensions, and I’ll present it in this way. How-
ever, later on, we will be interested in finite extensions almost exclu-
sively, so this added generality is not really essential.

Example 6.1. Consider E = Q(
√

2) as an extension of F = Q. Since√
2 generates E, any Q-automorphism ϕ of E is already determined

by what it does on
√

2. The minimal polynomial of
√

2 ∈ E over
Q is given by f = x2 − 2 ∈ Q[x]. Since ϕ leaves Q invariant,

√
2

can only be mapped to another zero of f . This gives two potential
automorphisms: the identity and ϕ(

√
2) = −

√
2. We observed above,

after Definition 5.15, that conjugates can be mapped to each other by
an F -homomorphism; this was a consequence of Lemma 5.14. More
precisely, there is an F -homomorphism ϕ : F (

√
2) → F (−

√
2) that

sends
√

2 7→ −
√

2. Since F (
√

2) = F (−
√

2) = E, this map is an
F -automorphism of E.

So Gal(E/F ) = {1, ϕ}, with ϕ(a + b
√

2) = a − b
√

2, a, b ∈ Q. It
now follows that E = Q(

√
2) is Galois over Q because if ϕ(t) = t for

t = a+ b
√

2 ∈ E, then b = 0, so no element t /∈ Q of E is fixed by ϕ.

Exercise 6.3. The automorphism ϕ has a simple structure from an alge-
braic point of view. However, show that ϕ is discontinuous everywhere
on its domain Q(

√
2) ⊆ R.

Example 6.2. Now let’s discuss E = Q(21/3) in the same style. As
before, any ϕ ∈ Gal(E/Q) must map 21/3 to one of its conjugates.
The minimal polynomial of 21/3 is f = x3 − 2, which has only this
one root, 21/3, in E (the other two roots in C are non-real). Thus
we must map ϕ(21/3) = 21/3; in other words Gal(E/Q) = 1. Thus
Inv Gal(E/Q) = E, and E/Q is not a Galois extension.

This happened because the minimal polynomial of the adjoined el-
ement 21/3 did not split in E and we ran out of conjugates that 21/3

could have been mapped to by an element of the Galois group. If we
instead consider a splitting field L = Q(21/3, 21/3e2πi/3) of f , then L
contains (by construction) all three roots a1 = 21/3, a2 = 21/3e2πi/3,
a3 = 21/3e4πi/3 of f = x3− 2. Since L = Q(a1, a2), an automorphism is
determined by what it does on a1, a2, and one can now show that all 6
conceivable choices a1 7→ aj, a2 7→ ak, with j 6= k drawn from 1, 2, 3,
actually produce a Q-automorphism.
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Exercise 6.4. (a) Show that for any choice of aj 6= ak, we have that
L = Q(aj, ak), aj /∈ Q(ak).

(b) Show that for any choice of aj 6= ak, there is a ϕ ∈ Gal(L/Q) with
ϕ(a1) = aj, ϕ(a2) = ak. Suggestion: Use part (a) and apply Lemma
5.14 twice, first to Q(a1) and Q(aj), and then to the full extensions.

(c) Deduce that L/Q is Galois.

As an example of the notions just discussed in an abstract setting, let
us finally take a look at Gal(L/E). Recall that L/E/Q, so E is an in-
termediate field of L/Q. We already know that Gal(L/E) is a subgroup
of Gal(L/Q), which, as we just saw, contains the six automorphisms
corresponding to the six possible choices in a1 7→ aj, a2 7→ ak.

Now a ϕ ∈ Gal(L/E) must fix E = Q(a1), so must send a1 7→ a1;
conversely, any such map fixes all of E, of course. So Gal(L/E) contains
the following two automorphism: (1) a1 7→ a1, a2 7→ a2, and this is just
the identity; (2) a1 7→ a1, a2 7→ a3.

Exercise 6.5. We observed above that Gal(L/E) is always a subgroup of
Gal(L/F ) for an intermediate field L/E/F . Please verify that the two
maps from Gal(L/E) that we just obtained indeed form a subgroup.

Exercise 6.6. What is Gal(L/Q) in this example (please find a familiar
group that this Galois group is isomorphic to)?

Exercise 6.7. Consider E/Q, where E = Q(21/4, i) is the splitting field
of f = x4 − 2. Find [E : Q] and show that |Gal(E/Q)| = [E : Q] and
that E is Galois over Q.

Exercise 6.8. Consider f(x) = x3 + x2 − 2x − 1 ∈ Q[x]. (a) Show
that f is irreducible; (b) show that if r ∈ C is a root of f , then so is
r2 − 2; (c) conclude that Q(r) is a splitting field for any such r; (d)
find Gal(Q(r)/Q).

Exercise 6.9. Show that every homomorphism ϕ : F → F fixes the
prime field P of F pointwise. Conclude that Aut(F ) = Gal(F/P ), if
F is viewed as an extension of its prime field.

Exercise 6.10. Show that R does not have any non-trivial (that is,
ϕ(a) 6= a for some a ∈ R) automorphisms. Hint: Show that if a < b,
then ϕ(a) < ϕ(b) for any homomorphism. For this, start out with the
case a = 0 and try to characterize the condition that b > 0 algebraically.

6.2. The Galois connection. We now return to the general situ-
ation and explore the Galois connection between (sub)groups of F -
automorphisms and fixed (sub)fields in more detail. As we already
discussed, we can move back and forth between these objects with the
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help of the operations Gal and Inv. It will be useful to temporarily
simplify the notation, as follows: let E/F be a field extension, and
let G = Gal(E/F ). Then, if L is an intermediate field, E/L/F , we
write L∗ := Gal(E/L); as we observed above, L∗ is a subgroup of G.
Similarly, if H ⊆ G is a subgroup, then we write H∗ := InvH; this is
an intermediate field E/H∗/F .

So ∗ can mean either Gal or Inv, and which operation is meant
depends on the context. There is no danger of confusion, however,
because Gal is applied to intermediate fields while Inv must be ap-
plied to subgroups of automorphisms, so only one of the two possible
interpretations of ∗ makes sense in any given situation.

Proposition 6.2. Let L ⊆ K be intermediate fields of a field extension
E/K/L/F , and let J ⊆ H ⊆ G := Gal(E/F ) be subgroups. Then:
(a) K∗ ⊆ L∗ and H∗ ⊆ J∗;
(b) L∗∗ ⊇ L and H∗∗ ⊇ H;
(c) L∗∗∗ = L∗ and H∗∗∗ = H∗.

Proof. Part (a) is clear from the definitions: for example, if ϕ ∈ K∗ =
Gal(E/K), then ϕ(a) = a for all a ∈ K, so in particular this holds for
all a ∈ L ⊆ K, and thus ϕ ∈ L∗ = Gal(E/L). Part (b) is (6.1) restated
in our new notation and was discussed in Exercise 6.2.

As for part (c), notice that L∗∗∗ = (L∗)∗∗ ⊇ L∗ by (b), but also L∗∗ ⊇
L by (b) again and thus L∗∗∗ ⊆ L∗ by (a). The proof of H∗∗∗ = H∗ is
completely analogous. �

Lemma 6.3. Let E/K/L/F be a field extension, and suppose that K/L
is of finite degree. Then [L∗ : K∗] ≤ [K : L].

In particular, this can be applied to K = E, L = F if E/F is finite,
and since E∗ = Gal(E/E) = 1, so [L∗ : E∗] = |L∗|, it then says that
|Gal(E/F )| ≤ [E : F ].

This statement is immediately plausible because if a ∈ E\F , then we
know that an automorphism can map a only to one of its conjugates,
and there are at most deg fa of these (if we are unlucky, there are fewer,
if fa doesn’t split in E or has multiple roots). This already settles the
case E = F (a), and in general, we would hope to be able to apply this
step several times to deduce the result.

Proof. We organize the formal proof as an induction on n = [K : L].
If n = 1, then K = L, so L∗ = K∗ and the claim becomes trivial.

Now assume that n > 1 and that the inequality holds for extensions
K ′/L′ of with [K ′ : L′] < n. If there is an intermediate field M prop-
erly between K and L, then [K : M ], [M : L] < n, so the induction
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hypothesis can be applied to these extensions and we obtain that

[L∗ : K∗] = [L∗ : M∗][M∗ : K∗] ≤ [M : L][K : M ] = [K : L].

Here, we use Exercise 2.37 for the first equality and Theorem 5.4 for the
second one. (In fact, we use a version of Exercise 2.37 for potentially
infinite groups.)

If there are no such intermediate fields M , then we can take any
a ∈ K \ L, and we will have that K = L(a) (otherwise M = L(a)
would be a proper intermediate field). Let fa ∈ L[x] be the minimal
polynomial of a over L. We then know that deg fa = n. Now consider
a coset ϕK∗ = ϕGal(E/K) ∈ L∗/K∗, ϕ ∈ L∗ = Gal(E/L), and let
ϕψ, ψ ∈ K∗, be an arbitrary element of this coset (also recall that the
group operation in L∗ is composition, so this is the composition of the
automorphisms ϕ, ψ). Since ψ ∈ Gal(E/K) fixes K = L(a), we have
that (ϕ ◦ ψ)(a) = ϕ(a). So all automorphisms from a fixed coset ϕK∗

send a to the same image. This image ϕ(a) must be another root of fa
because the coefficients of fa are in L and are thus fixed by ϕ.

Moreover, if we now consider two distinct cosets ϕjK
∗, then ϕ1, ϕ2

do not send a to the same image: if they did, it would follow that
ϕ1(b) = ϕ2(b) for all b ∈ K = L[a], so ϕ−12 ϕ1 ∈ Gal(E/K) = K∗ and
hence ϕ1K

∗ = ϕ2K
∗. So the representatives of a given coset can be

described as exactly those automorphisms from L∗ that send a to a
certain fixed image. In particular, this says that there can be at most
as many cosets as there are potential images of a, and we observed
earlier that these are restricted to the roots of fa, which is a degree n
polynomial. Thus [L∗ : K∗] ≤ n, as claimed. �

Lemma 6.4. Let E/F be a field extension, and write G = Gal(E/F ).
Suppose that J,H are subgroups of G with J ⊆ H ⊆ G and that [H : J ]
is finite. Then [J∗ : H∗] ≤ [H : J ].

If G is a finite group, then this can be applied to J = 1, H = G, and
then it says [E : Inv(G)] ≤ |G|. If E/F is also Galois, so Inv(G) = F ,
then it follows that [E : F ] ≤ |Gal(E/F )|, and when this is combined
with the previous Lemma, we obtain that a finite Galois extension
satisfies [E : F ] = |Gal(E/F )|. We already observed this situation in
some of the concrete examples we discussed above. Later, we will see
that this identity characterizes the Galois extensions among the finite
extensions.

Proof. Fix representatives ϕ1 = 1, ϕ2, . . . , ϕn of the (left) cosets ϕJ ⊆
H; in other words, H is the disjoint union of the ϕkJ , k = 1, . . . , n.
If we had [J∗ : H∗] > [H : J ] = n, then we could find elements
a1, . . . , an+1 ∈ J∗ ⊆ E that are linearly independent over H∗ = Inv(H).
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Now consider the system of linear equations, in E,

(6.2)
n+1∑
k=1

ϕj(ak)xk = 0, j = 1, . . . , n.

Since this is a homogeneous system of n equations for n+ 1 unknowns,
it has non-trivial solutions (x1, . . . , xn+1) 6= (0, . . . , 0). Among these,
fix one with the smallest possible number of non-zero entries. By rela-
beling, we may assume that x = (b1, . . . , bN , 0, . . . , 0), with bj 6= 0. We
may further assume that b1 = 1 (if not, divide by b1). We also know
that not all bj are in H∗ because if they were, then (6.2) for j = 1
would show that the aj are linearly dependent over H∗, contrary to
our assumption. For convenience, let’s assume that b2 /∈ H∗. So there
exists ϕ ∈ H with ϕ(b2) 6= b2.

Now apply this automorphism ϕ to all equations from (6.2). Recall
that ϕϕj, j = 1, . . . , n, still represent exactly the elements of H/J
(and each coset once); for example, this follows because a group acts
on its left cosets in this way by left multiplication. Moreover, any
automorphism ψ ∈ ϕjJ from a given coset sends ak to the same image
because the ak were taken from J∗, so are fixed by the automorphisms
from J . These remarks show that yj := ϕ(xj) still solves (6.2); we have
only reordered the equations. Now y = (1, ϕ(b2), . . . , ϕ(bN), 0, . . . , 0)
and ϕ(b2) 6= b2 by our choice of ϕ, so x − y is a non-trivial solution
of (6.2) with fewer non-zero entries than x, contrary to our choice of
x. �

Let us now elaborate some on the observations we already made
above, following the statement of Lemma 6.4. We would like to iden-
tify situations in which the inequalities from Lemmas 6.3, 6.4 become
equalities. We introduce some additional terminology. Given a field
extension E/L/F , we call an intermediate field L closed if L∗∗ = L.
Similarly, a subgroup H ⊆ Gal(E/F ) is called closed if H∗∗ = H. So
closed objects have the property that going back and forth with the
Galois connection brings us back to the original object. An extension
E/F was defined to be Galois if (in the new terminology) F is closed.

Intermediate fields can fail to be closed, as we saw in the examples
above: consider again E/F = Q(21/3)/Q and L = Q. Then L∗∗ = E
since L∗ = Gal(E/F ) = 1. (Finite subgroups of Galois groups are
always closed, as we will see in a moment.) Proposition 6.2(c) implies
that intermediate fields and subgroups of the form X∗ (in other words,
everything that is obtained by applying Gal or Inv) are closed.

Theorem 6.5. Let E/K/L/F be a field extension. (a) If L is closed
and [K : L] is finite, then K is also closed and [L∗ : K∗] = [K : L].
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(b) Write G = Gal(E/F ). Let J,H be subgroups of G with J ⊆ H ⊆ G.
If J is closed and [H : J ] is finite, then H is also closed and [J∗ : H∗] =
[H : J ].

The following special cases are of particular interest.

Corollary 6.6. (a) Let E/F be a field extension. Then all finite sub-
groups of Gal(E/F ) are closed.
(b) Let K be an intermediate field of the Galois extension E/F . If
[K : F ] is finite, then K is closed, and thus E is Galois over K.

To prove part (a) of the Corollary, apply Theorem 6.5(b) to the finite
subgroup H ⊆ Gal(E/F ) and J = 1, and observe that J = 1 is closed.
Similarly, part (b) follows by applying Theorem 6.5(a) with L = F .
Notice that L = F is closed here because E was assumed to be Galois
over F .

Proof of Theorem 6.5(a). We have that

(6.3) [K : L] = [K : L∗∗] ≤ [K∗∗ : L∗∗] ≤ [L∗ : K∗] ≤ [K : L];

here, we’ve used that L = L∗∗ and K ⊆ K∗∗, and then we apply
Lemmas 6.3 and 6.4. More explicitly, Lemma 6.3 shows us that the
final inequality holds and [L∗ : K∗] is finite, and this fact in turn lets
us use Lemma 6.4 to obtain the previous estimate. It then follows that
all inequalities in (6.3) are equalities and K∗∗ = K. �

Exercise 6.11. Prove part (b) in the same way.

Next, we would like to analyze which intermediate fields correspond
to normal subgroups under the Galois connection. We introduce one
more piece of terminology: we call an intermediate field L, with E/L/F
a field extension, stable if ϕ(L) ⊆ L for all ϕ ∈ Gal(E/F ). This
requirement is somewhat reminiscent of being a fixed field, but it is
much weaker: we only ask that ϕ(a) ∈ L again for every a ∈ L, but we
do not insist that a gets mapped to itself.

If L is stable and ϕ ∈ G = Gal(E/F ), then ϕ−1 ∈ G also, so
ϕ−1(L) ⊆ L as well. Equivalently, L ⊆ ϕ(L), so a stable intermediate
field will in fact satisfy ϕ(L) = L for all ϕ ∈ G.

Lemma 6.7. (a) If L is stable, then L∗EG; (b) if H EG, then H∗ is
stable.

Proof. (a) Let ϕ ∈ L∗ = Gal(E/L) and ψ ∈ G = Gal(E/F ). If a ∈ L,
then also ψ−1(a) ∈ L, as just observed, and ϕ fixes the elements of L,
so ψϕψ−1(a) = ψψ−1(a) = a. This says that ψϕψ−1 ∈ L∗, as required.

Part (b) is similar: if a ∈ H∗ = Inv(H) and ϕ ∈ G = Gal(E/F ),
then for any ψ ∈ H, we have that ϕ−1ψϕ ∈ H as well, so ψϕ(a) =
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ϕϕ−1ψϕ(a) = ϕ(a). This says that ϕ(a) ∈ H∗, so we have established
that H∗ is stable, as claimed. �

The following formula is also useful and throws light from a slightly
different angle on these issues. Consider again an intermediate field
E/L/F , and write G = Gal(E/F ), H = L∗ = Gal(E/L). Let ϕ ∈ G.
Then

(6.4) ϕHϕ−1 = ϕ(L)∗ = Gal(E/ϕ(L)).

This confirms one more time that H E G if L is stable (= part (a) of
the Lemma).

Exercise 6.12. Prove (6.4).

Theorem 6.8. Suppose that E/F is a Galois extension, f ∈ F [x] is
irreducible (over F ) and f(a) = 0 for some a ∈ E. Then E contains a
splitting field of f , and f does not have multiple roots in E.

The last statement means that (as expected, probably) the linear
factors x− c of f in E[x] are all distinct. We’ll discuss multiple roots
in some detail in the next section.

Proof. The coefficients of f are from F , so any ϕ ∈ G = Gal(E/F )
leaves these invariant. It follows that ϕ(f(a)) = f(ϕ(a)) = 0 also. Let
a1 = a, a2, . . . , ak be the complete list of the elements of the form ϕ(a),

ϕ ∈ G, and put g(x) =
∏k

j=1(x − aj). (Why is this list finite?) Each

ϕ ∈ G permutes the aj; in fact, G acts on {a1, . . . , ak}, by restricting
automorphisms ϕ ∈ G to this set. It follows that if we extend ϕ ∈ G
to E[x] by sending x 7→ x, then ϕ(g(x)) = g(x). Since this holds for all
ϕ ∈ G, the coefficients of g (when multiplied out) lie in the fixed field
G∗ of G, which is F , since we assumed E to be Galois over F .

So g ∈ F [x]. Moreover, g is monic, g(a) = 0, and deg g ≤ deg f since
the linear factors of g are also linear factors of f (in E[x]). However, f
is irreducible and thus its monic version cf is the minimal polynomial
of a. We conclude that cf = g, and our claims follow. �

Theorem 6.9. Suppose that the extension E/F is Galois. Then an
intermediate field L is Galois over F precisely if L is stable.

Notice that here we are dealing with a slightly different scenario
than previously considered: we make the intermediate field the new
extension field and keep the ground field the same, rather than the
other way around.

Proof. If L is stable and a ∈ L \ F , then ϕ(a) 6= a for some ϕ ∈
Gal(E/F ), since E/F is Galois. Since L is stable, ϕ(L) = L, so the
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restriction of ϕ to L is in Gal(L/F ), and thus a /∈ Inv Gal(L/F ). This
shows that Inv Gal(L/F ) = F , as claimed.

Conversely, suppose now that L/F is Galois. Take any a ∈ L, ϕ ∈
Gal(E/F ), and consider the minimal polynomial f ∈ F [x] of a; here,
we are for the first time making use of the fact that Galois extensions
are by definition algebraic. We see as in the proof of Theorem 6.8
that ϕ(a) ∈ E is another (or perhaps the same) root of f . Moreover,
Theorem 6.8 says that f splits in L, so this field must contain this root.
Thus ϕ(a) ∈ L; we have shown that L is stable, as claimed. �

We have now collected quite a few facts about the Galois connection,
and our patience finally pays off. We are ready to combine these to
produce the Fundamental Theorem of Galois Theory:

Theorem 6.10. Let E/F be a finite Galois extension, and write G =
Gal(E/F ). Then the operation Gal sets up a bijection between the
intermediate fields L of E/F and the subgroups H of G, with inverse
Inv. If J ⊆ H ⊆ G are two such subgroups, then [H : J ] = [J∗ : H∗];
in particular, |Gal(E/F )| = [E : F ].

For any intermediate field L, the extension E/L is also Galois.
Moreover, L is Galois over F if and only if H E G, with H = L∗ =
Gal(E/L); in this case, Gal(L/F ) ∼= G/H.

When the Galois connection becomes a bijection, like here, it is more
common to refer to it as the Galois correspondence.

Proof. We know from Corollary 6.6 that all subgroups of G and all
intermediate fields are closed. This shows that Gal and Inv are inverses
of each other. In particular, these operations are injective, or, to spell
this out more explicitly, suppose that L∗ = K∗ for two intermediate
fields L,K. Then L = L∗∗ = K∗∗ = K, so Gal is injective, as claimed,
and of course the proof for Inv is completely analogous. The Galois
correspondence is surjective because any subgroup H = H∗∗ = (H∗)∗

is in the range of ∗ = Gal, and similarly for intermediate fields. The
formula [H : J ] = [J∗ : H∗] then follows from Theorem 6.5(b).

We already know that E/L is always Galois, for any intermedi-
ate field L; this was stated above as Corollary 6.6(b). By combining
Lemma 6.7 with Theorem 6.9, we then see that L/F is Galois precisely
if H EG; here, we make use of the fact that L∗∗ = L, which is needed
when we apply Lemma 6.7(b).

To prove the statement about G/H, we first show that this quotient
group is isomorphic to a subgroup of Gal(L/F ). Consider the restriction
homomorphism Φ : G → Gal(L/F ) that sends an automorphism ϕ ∈
G = Gal(E/F ) to its restriction ϕ|L to L. This is an element of
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Gal(L/F ) because L is stable. It’s also easy to check that Φ indeed
is a (group) homomorphism. What is the kernel of Φ? Obviously,
Φ(ϕ) = ϕ

∣∣
L

= 1 precisely if ϕ fixes all elements of L or, equivalently, if
ϕ ∈ Gal(E/L) = L∗ = H. So G/H = G/ ker(Φ) ∼= Φ(G) ⊆ Gal(L/F ),
as claimed.

On the other hand, we also have that

|G/H| = |G|/|H| = [E : F ]/[E : L] = [L : F ] = |Gal(L/F )|,

so G/H is in fact isomorphic to the whole group Gal(L/F ). �

Exercise 6.13. Return to the field extension E/Q, E = Q(21/3, e2πi/321/3)
from Example 6.2. How many intermediate fields does the extension
E/Q have? How many of these are Galois over Q (list those, please)?

6.3. Separable and normal extensions. We would now like to char-
acterize Galois extensions in terms of other conditions that can (we
hope) be easily verified. In fact, we will approach things from the
other end: we try to identify potential problems that might prevent
extensions from being Galois, and then we hope that an extension will
be Galois whenever these problems can be ruled out. Eventually, we
will find that Theorem 6.8 tells the whole story: the necessary condi-
tions formulated there for an extension to be Galois will turn out to be
sufficient as well.

To start our discussion of these issues, let’s first observe that a finite
extension E/F is Galois if and only if |Gal(E/F )| = [E : F ]. Indeed,
if E/F is Galois, then the Galois group has the asserted order, as
we stated above as part of the fundamental theorem. To prove the
converse, apply Theorem 6.5(b) with J = 1, H = G := Gal(E/F ) to
deduce that [E : L] = |G|, with L = G∗, but this equals [E : F ] by
assumption, so F = L = F ∗∗ and E/F is Galois, as claimed.

Recall also that we always have that |G| ≤ [E : F ], as we discussed
in the paragraph following Lemma 6.3. So finite extensions fail to be
Galois precisely if we have fewer automorphisms than expected, based
on the degree of the extension.

If we focus for a moment on simple extensions E = F (a) of degree
n, so n = deg fa, then an F -automorphism is determined by what it
does on a. Moreover, we must map a to another (or the same) zero
of fa, and conversely, given such a zero f(b) = 0, there is a unique F -
automorphism that sends a 7→ b. The upshot of all this is that F (a)/F
will be Galois precisely if fa has n distinct zeros in F (a).

Recall again Example 6.2 in this context: we saw that Q(21/3)/Q is
not Galois, and indeed the minimal polynomial f(x) = x3 − 2 of 21/3
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has no other zeros in Q(21/3), so there is only one automorphism (the
identity).

A related problem is conceivable: the minimal polynomial fa could
have zeros of higher multiplicity, and then there won’t be the required
n distinct zeros in F (a) even if this field is a splitting field of fa. Here,
we say that the root b of the polynomial f has multiplicity m ≥ 1 if
f(x) = (x − b)mg(x) with g(b) 6= 0. A root of multiplicity m = 1 is
called simple.

So, to summarize: we have found two potential obstacles to a finite
field extension being Galois. Minimal polynomials of elements of the
extension field (over the ground field) could fail to split, and they could
have roots of multiplicity > 1. We’ll look at this second problem first.

A useful tool to study higher order zeros is the formal derivative of
a polynomial f =

∑
ajx

j ∈ F [x]. As expected, we define it as

(6.5) f ′(x) := a1 + 2a2x+ . . .+ nanx
n−1;

we’ve made use of the usual (additive) exponential notation 2a2 =
a2 + a2 etc. Definition (6.5) is of course motivated by the familiar
calculus techniques that would apply to f ∈ R[x]; however, from a
formal point of view, it’s just a formula that we pull out of a hat to
define a new polynomial f ′ ∈ F [x].

A computation now establishes that this formal derivative still obeys
analogs of the sum and product rules:

(f + g)′ = f ′ + g′, (fg)′ = f ′g + fg′

Exercise 6.14. Prove this please. Also, show that (x−a)m has derivative
m(x− a)m−1 for m ≥ 1.

We are interested in formal derivatives mainly because they can be
used to detect higher order zeros:

Proposition 6.11. Let f ∈ F [x], deg f ≥ 1. Then a ∈ F is a root of
multiplicity m > 1 if and only if f(a) = f ′(a) = 0.

Proof. If a is a root of multiplicity m, then f(x) = (x − a)mg(x), so
the product rule and Exercise 6.14 now give that f ′ = m(x− a)m−1g+
(x− a)mg′. So if m ≥ 2, then f(a) = f ′(a) = 0, as claimed.

Conversely, suppose that f(a) = f ′(a) = 0. Recall that g(a) 6= 0
in the formulae above, by the definition of the multiplicity m, so the
condition that f ′(a) = 0 forces m > 1, as claimed. �

In the context of field extensions, we will also want to analyze the
multiplicity of zeros before they are actually available.
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Definition 6.12. We say that a polynomial f ∈ F [x] is separable if
its zeros in a splitting field E ⊇ F are all simple.

This definition makes sense because we have an F -isomorphism be-
tween any two splitting fields, which will thus send zeros to zeros again,
so a multiple zero in one splitting field will lead to the same situation
in any splitting field.

Exercise 6.15. Give a more explicit version of this argument please.

Theorem 6.13. An irreducible polynomial f ∈ F [x], deg f ≥ 1, is
separable if and only if f ′ 6= 0.

The condition really is that f ′ is not the zero polynomial. That is
not automatically true in fields of positive characteristic p. In this case,
kak = 0 whenever k is a multiple of p. In other words, if char(F ) = p,
then f ′ = 0 precisely if f is of the form

f(x) = a0 + apx
p + a2px

2p + . . .+ anpx
np,

or, equivalently, if f(x) = g(xp) for some g ∈ F [x].

Proof. Observe first of all that since f is irreducible and deg f ′ < deg f ,
we have that (f, f ′) = 1, unless f ′ = 0; in that case, (f, f ′) = (f, 0) = f .
Recall also that since F [x] is a PID, the gcd may be represented as
(f, f ′) = hf + kf ′, with h, k ∈ F [x].

So if f ′ 6= 0, then there are h, k ∈ F [x] so that hf + kf ′ = 1. Now
pass to a splitting field E ⊇ F of f . We see that f, f ′ can’t have a
common zero a ∈ E because then the LHS of our identity would vanish
at x = a.

Conversely, if f ′ = 0, then, trivially, any zero a of f is a zero of f ′

as well, so f has multiple roots in a splitting field by Proposition 6.11
(in fact, we have seen that all roots are multiple). �

Exercise 6.16. Show that if f ∈ F [x] is a general non-constant poly-
nomial, not necessarily irreducible, then f is separable if and only if
(f, f ′) = 1.

Exercise 6.17. Let f ∈ F [x] be an irreducible non-constant polyno-
mial. Show that all roots, in a splitting field E ⊇ F , have the same
multiplicity m ≥ 1.

Now let E/F be an algebraic field extension. We call an element
a ∈ E separable if its minimal polynomial fa ∈ F [x] is separable,
that is, fa has only simple zeros in a splitting field. Similarly, we call
the (algebraic, by assumption) extension E/F separable if all a ∈ E
are separable in this sense. So separable field extensions are those for
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which we are not plagued by one of the potential problems (namely,
multiple zeros) that we identified above. Notice also that separability
is a property of extensions, relative to a ground field, not just of E
itself.

Theorem 6.8 says that Galois extensions are always separable. More-
over, what we did above gives the following:

Corollary 6.14. Let E/F be an algebraic extension. If char(F ) = 0,
then E/F is separable.

This is immediate from Theorem 6.13 because we always have that
f ′ 6= 0 for a non-constant f ∈ F [x] in characteristic zero.

In positive characteristic, extensions can be inseparable. We ob-
served above, after Theorem 6.13, that if char(F ) = p > 0, then f ′ = 0
if and only if f(x) = g(xp) for some g ∈ F [x].

Lemma 6.15. Assume that char(F ) = p. If a ∈ F , a /∈ F p, then
f(x) = xp − a ∈ F [x] is irreducible and inseparable.

Here I write F p := {bp : b ∈ F} for the set of pth powers in F . Of
course, if a = bp is a pth power, then f = xp − a is reducible because
f(b) = 0, so f has x− b as a factor.

Exercise 6.18. Show (again, you did this earlier, in Exercise 4.16) that
in a field of characteristic p, we have the formulae

(6.6) (a+ b)p = ap + bp, (a− b)p = ap − bp.
Then show that a 7→ ap is a homomorphism, and thus F p is in fact a
subfield.

This homomorphism a 7→ ap, in a field of characteristic p, is some-
times called the Frobenius map.

Proof. In a splitting field E, the polynomial f has a zero b ∈ E, so
bp − a = 0, and then, by (6.6),

(6.7) f(x) = xp − bp = (x− b)p.
Let me now show that f is irreducible over F . Since factors of f ∈ F [x]
from F [x] stay factors in E[x], we see from (6.7) that (after multiplying
through by a suitable constant, to make them monic) these can only
be of the form g(x) = (x−b)k, and to obtain a proper factor, we’d have
to have 1 ≤ k ≤ p − 1. By multiplying out, we find that the constant
term of g is ±bk, so if g ∈ F [x], then bk ∈ F . Since (p, k) = 1 under
our current assumptions, there are m,n ∈ Z so that mp + nk = 1. It
now follows that b = bmp+nk = am(bk)n ∈ F , so a = bp ∈ F p, contrary
to our assumption.
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So f is irreducible, and not separable since f ′ = 0. In fact, (6.7)
shows that f has a single zero, of multiplicity p > 1, in a splitting
field. �

Example 6.3. Let’s now try to find a field F to which the Lemma ap-
plies. Fix a prime p, and consider the field F = Zp(t) of rational
functions over Zp; it will become clear in a moment why we need an
infinite field of positive characteristic to obtain an irreducible insepa-
rable polynomial.

I claim that then t /∈ F p, so a = t will work fine in Lemma 6.15.
(Perhaps also let the general set-up sink in for a moment: our example
of an inseparable polynomial will be f = xp−t ∈ F [x]. The members of
F [x] are polynomials in x, with coefficients that are themselves rational
functions of a second indeterminate t.)

We just check this claim by hand (and it’s plausible right away, t
doesn’t really look like it could be the pth power of a rational function).
Suppose I had t = (g(t)/h(t))p for some g, h ∈ Zp[t], h 6= 0. Then
g(t)p = th(t)p, but if we now multiply out the pth powers with the help
of (6.6), we obtain an equation of the form

gp0 + gp1t
p + . . .+ gpmt

mp = t (hp0 + hp1t
p + . . .+ hpnt

np) .

So the exponents are off by 1, and since p ≥ 2, this forces all coefficients
to be equal to zero, but we specifically took h 6= 0 a moment ago.

A splitting field E of f is generated by a single zero, so E = F (b),
and the extension E/F is not Galois, by Theorem 6.8.

Exercise 6.19. Find [E : F ] and |Gal(E/F )| in this example.

To round off our discussion of this topic, we make one more definition:
we say that a field F is perfect if every irreducible polynomial f ∈ F [x]
is separable. In this new terminology, Theorem 6.13 then implies that
every field of characteristic zero is perfect. The positive characteristic
case is clarified by:

Theorem 6.16. Suppose that char(F ) = p. Then F is perfect if and
only if F p = F .

Corollary 6.17. Every finite field is perfect.

To obtain the Corollary from the Theorem, recall that the Frobenius
map F → F , a 7→ ap is an injective homomorphism (why injective?)
whose image is contained in F p. If F is finite, then it follows that
|F p| ≥ |F |, and since also F p ⊆ F , we conclude that F p = F , as
claimed in the Corollary.
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Proof of Theorem 6.16. If F p 6= F , then, by Lemma 6.15, f = xp − a
with a ∈ F , a /∈ F p is an irreducible, inseparable polynomial, so F is
not perfect.

Conversely, suppose now that F is not perfect, and let f ∈ F [x]
be an irreducible, inseparable polynomial. By Theorem 6.13, we then
have that f ′ = 0. As we discussed earlier, this means that

f = a0 + apx
p + . . .+ anpx

np.

Now if all coefficients were pth powers, say ajp = bpj , bj ∈ F , then we
could use (6.6) to rewrite this as

f = (b0 + b1x+ . . .+ bnx
n)p = g(x)p,

with g ∈ F [x], but this contradicts our assumption that f is irreducible.
Thus at least one of the coefficients of f is not in F p. �

We now turn to the other (and in fact more obvious) potential prob-
lem, namely a lack of conjugates that elements of the extension field
could be mapped to under automorphisms. We make one more defini-
tion.

Definition 6.18. Let E/F be an algebraic field extension. We say
that E is normal over F if every irreducible polynomial f ∈ F [x] that
has a zero in E splits in E.

Exercise 6.20. Show that E is normal over F if and only if E contains
a splitting field of the minimal polynomial of every element of E.

Note that, just as for separability, this is a property of extensions,
not of individual fields. Theorem 6.8 says that Galois extensions are
normal.

Theorem 6.19. Let E/F be a finite field extension. Then E is normal
over F if and only if E is a splitting field of some f ∈ F [x].

The main point of this is the following: suppose we want a normal
extension E/F . Then taking a splitting field of a polynomial f is
definitely a step in the right direction because it makes sure that at
least for this particular polynomial f , all its zeros are in E. However, if
we now take a different irreducible polynomial g ∈ F [x] with a zero in
E, will that split, too? That doesn’t really seem clear, but the Theorem
says it does.

Proof. Assume first that the extension is normal. Since it is also of
finite degree, we can obtain E from F by adjoining finitely many ele-
ments, say E = F (a1, . . . , an). We can now take f = f1f2 · · · fn, where
fj ∈ F [x] is the minimal polynomial of aj, and then E will be a splitting
field of f , as desired.
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Exercise 6.21. Give a more detailed version of this step please.

Conversely, suppose now that E is a splitting field of f ∈ F [x]. So
we can write E = F (a1, . . . , an), and here f(aj) = 0. Let g ∈ F [x] be
irreducible, with g(b) = 0 for some b ∈ E. We must show that g splits
in E. Let K ⊇ E be a splitting field of g over E. Notice that then K is
also a splitting field of fg over F (just check it against the definition:
K is generated over F by the combined zeros of f, g, and it contains
all these, so fg splits).

I first claim that ϕ(b) ∈ E for all ϕ ∈ Gal(K/F ). To check this,
it suffices to show that ϕ(aj) ∈ E for j = 1, 2, . . . , n because E is
generated by the aj, so this will imply that ϕ(E) ⊆ E. This second
version of the claim is clear, however, because f(aj) = 0, so, since
the coefficients of f are fixed by ϕ ∈ Gal(K/F ), we also have that
ϕ(f(aj)) = f(ϕ(aj)) = 0, but E, being a splitting field of f , contains
all zeros of f , so ϕ(aj) ∈ E, as desired.

If c ∈ K is an arbitrary root of g, then Lemma 5.14 gives us an
F -isomorphism ϕ0 : F (b)→ F (c) that sends b 7→ c. Now observe that
K is also a splitting field of fg over both F (b) and F (c). Thus Theo-
rem 5.17 (which, as you perhaps remember, was obtained by repeated
application of Lemma 5.14) lets us extend ϕ0 to an F -isomorphism
ϕ : K → K. In other words, we obtain a ϕ ∈ Gal(K/F ) with ϕ(b) = c.
So what we showed in the previous paragraph now implies that c ∈ E
as well. Since c was an arbitrary zero of g, this says that g already
splits in E, as required. �

Exercise 6.22. Prove the following generalization of Theorem 6.19: Let
E/F be an algebraic extension. Then E/F is normal if and only if E
is a splitting field over F of a set of polynomials P ⊆ F [x].

Theorem 6.20. Let E/F be a finite field extension. Then the following
are equivalent:
(a) E is Galois over F ;
(b) |Gal(E/F )| = [E : F ];
(c) E/F is a normal and separable extension;
(d) E is a splitting field of a separable polynomial f ∈ F [x].

Note that the polynomial in part (d) does not have to be irreducible.
This is crucial because it allows us to combine extensions by zeros of
irreducible polynomials by just multiplying those together. We already
saw this device in action in the proof of Theorem 6.19 above.

One part of the proof of Theorem 6.20 will be about counting au-
tomorphisms, when we deduce (b) from (d). This part will make use
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of the following Lemma, which is of some independent interest. We’ll
establish this first and then return to the Theorem.

Lemma 6.21. Let E be a splitting field of f ∈ F [x], and let g ∈ F [x]
be an irreducible polynomial that splits in E. Let b ∈ E be a fixed root
of g, and let K = F (b). Write G = Gal(E/F ), H = Gal(E/K) ⊆ G.
Then, if [G : H] = k, then g has k distinct roots, and these may be
obtained as ϕj(b), j = 1, 2, . . . , k, where the ϕj ∈ G represent the cosets
of G/H.

Proof. As above, in the proof of Theorem 6.19, it follows that for any
ϕ ∈ G, we have that ϕ(g(b)) = g(ϕ(b)) = 0, so ϕ(b) is a root, too.
Moreover, and again by the exact same argument as in that proof, we
obtain all roots of g in this way (if c is another root, we can map b 7→ c
and extend this map to an element ϕ ∈ G).

Now let’s look at the natural action of G on this set of roots; this
just maps (ϕ, c) 7→ ϕ(c) for a root c ∈ E and ϕ ∈ G. We just observed
that this action is transitive. The stabilizer of b contains exactly those
ϕ with ϕ(b) = b, but since K = F (b), this is Gal(E/K) = H. Thus
the various claims are now immediate consequences of the natural cor-
respondence between the orbit Gb and the coset space G/Stab(b) =
G/H. (Review Theorem 3.16 and its proof perhaps if this isn’t clear
to you.) �

Proof of Theorem 6.20. We already know that (a) and (b) are equiva-
lent. Moreover, and also as discussed earlier, Theorem 6.8 gives that
(a) implies (c). To obtain (d) from (c), we argue as in the first part
of the proof of Theorem 6.19. More explicitly, since the extension is
finite, we have that E = F (a1, . . . , an) for suitable elements aj ∈ E.
Now again take their minimal polynomials fj ∈ F [x], and let f be the
product of these, with the extra precaution that identical factors are
not repeated (to keep the polynomial separable). Then, as before, E is
a splitting field of f ∈ F [x]. Moreover, f is indeed separable: the irre-
ducible factors of f are minimal polynomials of elements of a separable
extension, and we made sure (by not repeating irreducible factors) that
distinct factors have distinct zeros also.

Exercise 6.23. This final step makes use of the following (easy) fact: if
f, g ∈ F [x] are irreducible monic polynomials and f, g have a common
zero in some extension E ⊇ F , then f = g. Prove this please.

Finally, we show that (d) implies (b). So we need to count auto-
morphisms, and we organize the argument as an induction on [E : F ],
with Lemma 6.21 providing the induction step. Of course, everything
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becomes trivial if [E : F ] = 1 (= basis of our induction) because then
E = F . So assume now (= induction step) that [E : F ] ≥ 2, and that
E ′/F ′ satisfies the formula from part (b) whenever E ′ is a splitting field
of a separable polynomial over F ′ with [E ′ : F ′] < [E : F ].

Let g ∈ F [x] be an irreducible factor of f of degree k ≥ 2 (what
happens if f does not have any such factor?). Let b ∈ E be a zero of
g, and put K = F (b), so K is an intermediate field of E/K/F . Note
that g is separable, so g has exactly k distinct roots. Now Lemma 6.21
shows that [G : H] = k, where G = Gal(E/F ), H = Gal(E/K). We
also have that [K : F ] = k because this is a simple extension by b,
an element with a minimal polynomial (namely, g, up to a constant
factor) of degree k. Moreover, E is also a splitting field of f ∈ K[x]
over K, and f is still separable (it’s the same polynomial as before).
Since this extension E/K has smaller degree than E/F , the induction
hypothesis applies: E/K satisfies |Gal(E/K)| = |H| = [E : K]. By
putting things together, we now see that

|G| = [G : H]|H| = [K : F ][E : K] = [E : F ],

as desired. �

The next result explains the terminology, to some extent.

Theorem 6.22. Let E/F be a finite Galois extension. Let L be an
intermediate field, and write H = Gal(E/L), G = Gal(E/F ). Then
the following are equivalent:
(a) L is normal over F ;
(b) L is stable, that is, ϕ(L) = L for all ϕ ∈ G;
(c) H is a normal subgroup of G.

Proof. Essentially, we did this already. We know that (b) and (c) are
equivalent, by combining the last part of the fundamental theorem with
Theorem 6.9.

If (a) holds, then we obtain (b) from an argument that we already
used in the proof of Theorem 6.19: Let a ∈ L. We want to show that
ϕ(a) ∈ L also for all ϕ ∈ G. Consider the minimal polynomial f ∈ F [x]
of a. This splits in L, by assumption, and the ϕ(a) are zeros of f , so
they must all be contained in L, as required.

Conversely, assume (b) now and let f ∈ F [x] be irreducible and
monic, with f(a) = 0 for some a ∈ L. We must show that f splits in
L. Again, this follows from an argument we have seen before (see the
proof of Theorem 6.8). Let a1 = a, a2, . . . , an be the orbit Ga = {ϕ(a) :
ϕ ∈ G} of a under G, and consider g =

∏
(x−aj). Then ϕ(g(x)) = g(x)

for all ϕ ∈ G because ϕ just permutes the aj. Thus g ∈ F [x]. The
aj are zeros of the irreducible polynomial f , and thus cannot be zeros



136 Christian Remling

also of a polynomial from F [x] of strictly smaller degree. It follows
that f = g. The assumption that L is stable gives that aj ∈ L, so f
splits in L, as desired. (Alternatively, you could use Theorem 6.9 and
the implication (a) =⇒ (c) of Theorem 6.20, in this order, to deduce
that L/F is Galois, hence normal.) �

Exercise 6.24. Let F = Q, E = Q(21/4), K = Q(21/2), so E/K/F is a
field extension. Show that both E/K and K/F are normal, but E/F
isn’t.

Exercise 6.25. Let K be an intermediate field of the normal extension
E/F . Is it then true that E/K is normal as well? How about K/F?
Give a proof or counterexample. (If it helps, you can assume that E/F
is finite.)

Exercise 6.26. Let f ∈ F [x] be irreducible, and let E/F be Galois.
Then f might factor in E[x] into irreducible (in E[x]) factors of smaller
degree. Show that all of these have the same degree. Also, give an ex-
ample where this common degree k satisfies 1 < k < deg f . Suggestion:
Let the elements of Gal(E/F ) act on the factorization of f in E[x].

If an algebraic extension E/F fails to be normal, then the reason for
this must be that elements are “missing” from E. More precisely, there
is an a ∈ E whose minimal polynomial does not split in E, but this
we can rephrase as follows, if we work in the algebraic closure E of E.
The polynomial fa has a zero b ∈ E, b /∈ E. A normal extension (that
is also a subfield of E) would be expected to contain all such b’s. This
problem can be fixed by adjoining these elements, and if we do this in
the most economical way possible, then we arrive at what we will call
a normal closure. More precisely:

Definition 6.23. Let E/F be an algebraic extension. We call an
extension field E ′ ⊇ E a normal closure if: (1) E ′/F is normal; (2) if
E ′′/F is also normal, with E ⊆ E ′′ ⊆ E ′, then E ′′ = E ′.

A more careful version of the procedure just described proves that
normal closures always exist. More specifically, if E/F is finite, say
E = F (a1, . . . , an), and these elements have minimal polynomials fj,
then we can take E ′ as a splitting field of f = f1f2 · · · fn over E.
Then E ′ ⊇ E, and since E ′ is also a splitting field over F (of the same
polynomial f), is normal over F by Theorem 6.19. This settles property
(1) of the definition. Moreover, (2) is immediate from the definitions
(of normal extensions and splitting fields): Any field between E and
E ′ that is normal over F must at least contain all the zeros of f , but
these generate E ′, so it must be all of E ′.
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If E/F is only algebraic and not necessarily finite, then a version of
this argument still works, if we make use of the result from Exercise
6.22. So indeed any algebraic extension has a normal closure.

Proposition 6.24. The normal closure is essentially unique, in the
sense that if E ′, E ′′ ⊇ E are normal closures of E/F , then there is an
E-isomorphism ϕ : E ′ → E ′′.

Exercise 6.27. Focus on the case of a finite extension E/F . Then
deduce the Proposition from the uniqueness of splitting fields, as de-
scribed in Theorem 5.17.

Please keep in mind that normal closures are defined for extensions,
relative to a ground field. So it does not make sense to ask: what is
the normal closure of E = Q(21/3)? This only becomes meaningful if
we also provide a ground field, so what we can ask is:

Exercise 6.28. What is the normal closure of E/Q and of E/E?

Consider again our favorite example f(x) = x3 − 2 ∈ Q[x]. The
roots in C are aj = 21/3ζj, j = 0, 1, 2, with ζ = e2πi/3, so ζ3 = 1. To
construct a splitting field E ⊆ C, it was not enough to adjoin just one
of the roots; rather, we have that E = Q(aj, ak) for any two roots,
and Q(aj) is a strictly smaller field for any j. In other words, E is not
obviously a simple extension of Q. But maybe we have that E = Q(b)
anyway, for some other element b ∈ E. That is indeed the case here:

Exercise 6.29. Show that E = Q(b) for b = 21/3 + ζ.

We now study this question, when is a field extension E/F simple,
that is, when is there an a ∈ E such that E = F (a), in a general
setting. First of all, here’s a general criterion:

Theorem 6.25. Let E/F be a finite field extension. Then E = F (a)
for some a ∈ E if and only if there are only finitely many intermediate
fields.

Proof. Assume first that the extension is simple, let’s say E = F (a)
and let’s denote the minimal polynomial of a over F by f ∈ F [x]. Let
L be an intermediate field, so E/L/F , and let g ∈ L[x] be the minimal
polynomial of a over L. Then, since f ∈ L[x] also, we have that g|f
in L[x]. I claim that L can be recovered from g; more precisely, L will
turn out to be the field generated by the coefficients of g. This will
prove that there are only finitely many intermediate fields because f
has only finitely many monic factors in E[x].

Let L′ be this intermediate field that is generated by (F and) the
coefficients of g. So the situation is E/L/L′/F . Since g ∈ L′[x], we
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conclude that g is also the minimal polynomial of a over L′. By our
assumption, E = L(a) = L′(a), so [E : L] = [E : L′] (= deg g), by
Theorem 5.3. Thus also [L : L′] = 1, by Theorem 5.4, and this says
that L = L′, as already announced above.

Conversely, assume now that E/F has only finitely many intermedi-
ate fields. We want to show that E = F (a) for some a ∈ E. That is
clear if F is a finite field because then E is finite as well, so (E×, ·) is
cyclic by Theorem 4.27. In other words, E× = 〈a〉 for suitable a ∈ E,
a 6= 0, and then we certainly also have that E = F (a).

So let’s now focus on the case when F is infinite. I’ll show that
if a, b ∈ E are any two elements, then we can always find a c ∈ E
such that F (a, b) = F (c). Since the extension E/F is finite, repeated
application of this step will give the full claim.

Exercise 6.30. Give a more detailed version of this argument please.

Since there are only finitely many intermediate fields, the fields F (a+
tb), t ∈ F , cannot all be distinct, so we find s, t ∈ F , s 6= t, so that
F (a+sb) = F (a+tb) =: L. We have that b = (s−t)−1(a+sb−(a+tb)) ∈
L and then also a = a + sb − sb ∈ L, so F (a, b) = F (a + sb), as
desired. �

Exercise 6.31. Show that a transcendental simple extension has infin-
itely many intermediate fields.

Corollary 6.26. Let E/F be a finite separable extension. Then E =
F (a) for some a ∈ E.

Proof. We’ll verify the criterion from Theorem 6.25. Consider the nor-
mal closure E ′/F of E/F . Construct this extension E ′ as discussed
above, after Definition 6.23. Recall that we obtain E ′ as a splitting
field of a certain polynomial f ∈ F [x]; more precisely, f is a product
of minimal polynomials fj of certain elements aj ∈ E. These polyno-
mials fj are separable, by assumption. Moreover, it is of course not
necessary to repeat identical factors when building f as this will not
affect the splitting field anyway: p =

∏
gj has the same splitting field

as q =
∏
g
kj
j , kj ≥ 1. So we can keep f separable as well (as you

proved in Exercise 6.23, irreducible polynomials that are not constant
multiples of one another do not have common zeros). This implies that
the extension E ′/F , being a splitting field of a separable polynomial,
is Galois.

Moreover, E ′/F is also finite, so has a finite Galois group G, and
the intermediate fields of E ′/F are in one-to-one correspondence to the
subgroups of G, by the fundamental theorem. Since every intermediate
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field of E/F is an intermediate field of E ′/F also, it follows that there
are only finitely many of these. �

Exercise 6.32. Let E/F be a finite Galois extension. (So E = F (a) by
the Corollary.) Let b ∈ E, and let b1 = b, b2, . . . , bn be the orbit of b
under the action of the Galois group G.
(a) Show that the minimal polynomial of b is given by f(x) =

∏
(x−bj).

(b) Show that E = F (b) if and only if n = |G| (that is, no two elements
of G send b to the same image).

Exercise 6.33. Return to the example E = Q(21/3, ζ), ζ3 = 1, F = Q;
so E is a splitting field of f(x) = x3 − 2. Use the criterion from
the previous Exercise to confirm one more time that E = Q(b) with
b = 21/3+ζ (you did this earlier, in Exercise 6.29, by a direct argument).
Then show that Q(c) $ E if we take c = 21/3(1 + ζ).

6.4. Finite and cyclotomic fields. Usually, it’s not easy to deter-
mine the Galois group of a given field extension. We now discuss two
special types of extensions, where Gal(E/F ) can be found without too
much trouble. The fields we will encounter here are of considerable
independent interest.

Recall that the cardinality of a finite field can only be a prime power,
as we observed in Proposition 5.8; this follows by viewing such a field
F as a vector space over its prime field, which must be isomorphic to
Zp, with p = char(F ). Of course, F is not just a vector space but also
a field extension of Zp (more generally, any field is an extension of its
prime field).

Theorem 6.27. Let q = pn, n ≥ 1, be a prime power. Then there is
exactly one field F with |F | = q, up to isomorphism. This field F can
be obtained as the splitting field of f(x) = xq − x ∈ Zp[x].

We have that [F : Zp] = n, and F is Galois over Zp, with Gal(F/Zp)
cyclic of order n.

Proof. If F is any field with q elements, then the multiplicative group
F× has order |F×| = q − 1, so aq−1 = 1 for all a ∈ F× and thus also
aq = a. This last identity obviously also holds for a = 0, so f(a) = 0
for all a ∈ F , with f = xq − x, as above. So F contains a total of
q = deg f zeros of f , thus f splits in F , and clearly F is generated
by these zeros; in fact, F is equal to the collection of zeros. In other
words, F is a splitting field of f over Zp, as claimed. This also settles
uniqueness, by Corollary 5.18.

To actually obtain a field F with |F | = q, let’s just define F as a
splitting field of f = xq − x ∈ Zp[x] and see what happens. We have
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that f ′ = −1, so Proposition 6.11 shows that all roots of f are simple.
In other words, f has q distinct zeros in F .

Now if a, b ∈ F are two such zeros, then also f(a− b) = 0, by (6.6),
and (if b 6= 0) f(a/b) = 0. This says that the zeros of f form a subfield
of F , but F , being a splitting field, is generated by these zeros and
the elements of Zp, which are zeros themselves, so F doesn’t contain
anything else beside the zeros of f . (Note that we are in a very special
situation here: normally there is of course no reason whatsoever why
differences or quotients of zeros of a polynomial would be zeros of that
same polynomial again.) So |F | = q, exactly as we had hoped.

It is of course clear that [F : Zp] = n because a vector space of
dimension n over a field with p elements has pn vectors (just count the
linear combinations of basis vectors), so only this degree is consistent
with |F | = pn. The extension F/Zp is Galois by Theorem 6.20(d);
recall that we did establish above that f is separable.

As for finding G = Gal(F/Zp), we can establish a more precise state-
ment: I claim that G = 〈ϕ〉, where ϕ(a) = ap is the Frobenius map.
We observed earlier that this is a field homomorphism (basically, this
depended on (6.6)); also, ϕ fixes Zp (why again is that true?), so ϕ ∈ G
(and why is ϕ bijective?). So it now suffices to show that the order of ϕ
in G is n: this will imply that the cyclic subgroup of G generated by ϕ
has n elements, but this is the degree of the field extension, so |G| = n
by Theorem 6.20(b), and thus 〈ϕ〉 is already all of G, as claimed.

Now ϕk(a) = ap
k

(don’t get confused by the notation: the exponen-
tiation ϕk is done in G, so we are asked to apply ϕ k times). If this is

the identity map, then ap
k−a = 0 for all a ∈ F , but clearly this cannot

happen for k < n because the polynomial g(x) = xp
k − x has only pk

zeros and thus cannot vanish for all pn elements of F . So o(ϕ) ≥ n,
and either by checking it directly or referring to the argument from the
previous paragraph, it then follows that the order is equal to n. �

Exercise 6.34. Let E be a finite field. Show that then any field exten-
sion E/F is Galois, with cyclic Galois group.

A cyclotomic extension of F is an extension by the nth roots of
unity, or perhaps it’s clearer to describe this as a splitting field of
f(x) = xn − 1 ∈ F [x]. The terminology (cyclotomic = circle cutting)
refers to the situation when F = Q and we realize the splitting field as
a subfield of C: then the nth roots lie on the unit circle and are equally
spaced. In fact, I’ll only discuss this case (F = Q) here.

If E is such a splitting field of f = xn − 1 ∈ Q[x], let’s introduce
the notation Wn = {a ∈ E : an = 1} for the nth roots of unity. Then
|Wn| = n, as we can see either by considering f ′ = nxn−1 and using
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Proposition 6.11, or (more easily, probably) by just pointing out that
there are n distinct roots in C ⊇ Q.

Exercise 6.35. For a general field F , how can it happen that |Wn| < n
in a splitting field?

If a, b ∈ Wn, then also (ab−1)n = 1. This says that Wn is a subgroup
of E×. By Theorem 4.27, Wn is a cyclic group. (Again, this is perfectly
obvious without the need to appeal to any abstract theory if we just
realize the splitting field as a subfield of C.)

Definition 6.28. A primitive nth root of unity is a generator of the
cyclic group Wn.

For example, if we do realize the splitting field as a subfield of C, so
Wn ⊆ C as well, then for n = 4, we have that Wn = {1,−1, i,−i}, and
±i are primitive 4th roots of unity, while ±1 are not primitive. For any
n, ζ = e2πi/n is always a primitive root; in fact, the situation is easy to
clarify completely in the general setting:

Proposition 6.29. Fix a primitive nth root of unity ζ, so Wn =
{1, ζ, ζ2, . . . , ζn−1}. Then ζk is primitive if and only if (k, n) = 1.

Exercise 6.36. Prove Proposition 6.29.

By Proposition 6.29, the number of primitive roots equals the num-
ber of integers 1 ≤ k ≤ n that are relatively prime to n. This number
is called Euler’s ϕ function, and it is denoted by ϕ(n).

If ζ ∈ Wn is any primitive root, then the splitting field may be
obtained as the simple extension E = Q(ζ). Next, let’s factor f(x) =∏

w∈Wn
(x − w). The nth cyclotomic polynomial is obtained by only

keeping the primitive roots: we define

Φn(x) =
∏

ζ∈Wn primitive

(x− ζ).

Each w ∈ Wn has a unique order d, and d|n; equivalently, if wn = 1,
then w is a primitive dth root of unity for a unique d|n. Thus we obtain
the factorization

(6.8) f(x) = xn − 1 =
∏
d|n

Φd(x).

We derived this by working in the splitting field E = Q(ζ). However,
by repeated polynomial division, we in fact obtain from (6.8) that Φd ∈
Q[x]. More explicitly, we have that Φ1(x) = x − 1, and then (6.8) for
n = 2 gives that x2 − 1 = Φ1Φ2, so Φ2 ∈ Q[x] as well etc.
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Exercise 6.37. Establish the following fact (this is an abstract version
of what we use here): let E/F be a field extension, let f, g ∈ F [x],
h ∈ E[x] with f = gh. Then h ∈ F [x] also.

Exercise 6.38. Give a Galois theoretic proof that Φd ∈ Q[x], along the
following lines: (1) Show that Q(ζ)/Q is Galois; (2) investigate the
effect of letting a ϕ ∈ Gal(Q(ζ)/Q) act on Φd ∈ Q(ζ)[x].

Exercise 6.39. Find Φn(x) for n = 1, 2, . . . , 6.

Exercise 6.40. Show that Φ2k+1(x) = x2
k

+ 1.

Quite a bit more can be said.

Theorem 6.30 (Gauß). The cyclotomic polynomials Φd are irreducible,
and Φd ∈ Z[x].

Proof. I’ll discuss the (easier) second claim first. We just showed that
Φd ∈ Q[x]. However, f(x) on the left-hand side of (6.8) is from Z[x],
and now repeated application of Theorem 4.44 (with D = Z, F =
Q) shows that the factorization essentially takes place in Z[x]. More
precisely, it follows that there are αd ∈ Q with

∏
αd = 1 and αdΦd ∈

Z[x]. Since both f and the Φd are monic, we must have αd = ±1 here,
and thus Φd itself is already in Z[x], as claimed.

To show that Φn is irreducible, fix a primitive nth root of unity ζ,
and let f ∈ Q[x] be its minimal polynomial over Q. Then f |Φn, since
Φn(ζ) = 0 also, and our goal is to show that f = Φn. As above, we
obtain right away from Theorem 4.44 and the fact that both Φn and f
are monic that f ∈ Z[x].

If now p is any prime not dividing n, then ζp is again primitive, by
Proposition 6.29. Denote its minimal polynomial by g ∈ Q[x]; in fact,
we just showed that the minimal polynomial of a primitive root has
integer coefficients, so g ∈ Z[x]. Moreover, g(xp) has ζ as a zero, so we
again conclude that

(6.9) g(xp) = f(x)h(x),

say, for some h ∈ Q[x], and this can again be sharpened to h ∈ Z[x]
with the help of Theorem 4.44.

I now claim that f(x), g(x) have a common zero in Q(ζ) (which is
a splitting field for f, g). Indeed, if this were not true, then, since f, g
both divide Φn, which divides xn − 1, in turn, it would follow that

(6.10) xn − 1 = f(x)g(x)k(x)

for some k ∈ Z[x] (this is becoming repetitive, but why again are the
coefficients in Z?). I now want to apply the (ring) homomorphism
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Z[x]→ Zp[x], a 7→ a, x 7→ x to (6.9), (6.10). By (6.6), in Zp[x] we have

that g(xp) = g(x)p, so from (6.9) we learn that g(x) and f(x) have
a common zero in a splitting field over Zp; in fact, all zeros of f are
drawn from those of g. This would give the right-hand side of (6.10)
a multiple zero modp, but this contradicts the fact that the derivative
nxn−1 of the left-hand side is relatively prime to xn− 1 itself. Here, we
are using the extended version of Theorem 6.13 that was established
in Exercise 6.16 and also our earlier assumption that p - n (how does
that enter?).

So f(x), g(x) do have a common zero, and since both polynomials are
irreducible and monic, they are both equal to the minimal polynomial
of this zero. Thus f = g.

Let’s summarize: if p - n, then the minimal polynomial f of the
primitive root ζ satisfies f(ζp) = 0, so f is also the minimal polynomial
of ζp. Now any primitive root is of the form ζk, (k, n) = 1, so can be
reached by exponentiating in this way a number of times. It follows
that all primitive roots are zeros of f , and thus f = Φn. �

It is now easy to clarify the nature of the extension Q(ζ)/Q:

Theorem 6.31. Let ζ be a primitive nth root of unity. Then [Q(ζ) :
Q] = ϕ(n), the extension is Galois, and Gal(Q(ζ)/Q) ∼= U(Zn).

Proof. The first claim, on the degree of the extension, is immediate
from Theorem 6.30 because this says that the minimal polynomial of
ζ is Φn, and deg Φn = ϕ(n) (Euler’s ϕ function). Also, the extension
is certainly Galois because Q(ζ) is a splitting field of Φn over Q.

An element of the Galois group is determined by what it does on ζ,
and ζ can be mapped exactly to the other roots of its minimal polyno-
mial Φn. These are exactly the primitive nth roots, so now Proposition
6.29 gives that for each 1 ≤ k ≤ n with (k, n) = 1, there is exactly one
automorphism with ζ 7→ ζk. Notice that these k’s represent the units
of (the ring) Zn (and each unit once). Thus this correspondence that
associates k ∈ Zn with the automorphism that sends ζ 7→ ζk provides
the desired isomorphism between the Galois group and U(Zn). The
homomorphism property follows because (ζj)k = ζjk. �

Exercise 6.41. Give a more explicit version of these final steps please.
In fact, is it clear that if you map U(Zn) → G as indicated, then this
map is well defined?

Exercise 6.42. Show that the (abelian) group U(Zn) may or may not
be cyclic, depending on the value of n. (Give concrete examples for
both cases please.)
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Exercise 6.43. Let E ⊇ F be a splitting field of f(x) = x6 + 1 ∈ F [x].
Find [E : F ] for F = Z2 and F = Q.

Here’s a spectacular application of cyclotomic polynomials:

Theorem 6.32 (Wedderburn). A finite division ring is a field.

Proof. Call the division ring D, and let

C := {a ∈ D : ad = da for all d ∈ D}
be its center. It’s easy to check that C is a field.

Exercise 6.44. Provide the details please.

So |C| = q = pk for some prime p (in fact, we know that p =
char(D)), and since we can view D as a vector over C, we have that
|D| = qn for some n ≥ 1; the fact that at this pointD is not known to be
commutative plays no role here since we actually ignore multiplication
of elements of D among themselves when we view D as a C-vector
space.

We now consider the group (D×, ·) and let D× = D \ 0 act on itself
by conjugation (d, x) 7→ dxd−1. (We secretly know that this will turn
out to be the trivial action where each d acts as the identity map, if
we already assume the theorem.) Clearly, the center of the group D×

is C× = C \ 0, so the class equation for this action reads

(6.11) |D×| = |C×|+
∑

[D× : C(xj)],

where the xj represent the conjugacy classes with more than one el-
ement, and C(xj) = {a ∈ D× : axj = xja}; see Theorem 3.19. It’s
again straightforward to show that F = C(xj)∪ 0 is a division subring
(that is, a subring that is a division ring itself) of D; you can argue
exactly as you did in Exercise 6.44 above. As usual, by viewing F as a
vector space over (the field) C, we see that |F | = qd, with d = dimC F .
I now want to apply an analog of Theorem 5.4 to conclude that d|n,
n = dimC D, but here we definitely need to tread carefully because F
and D haven’t been shown to be commutative yet. Fortunately, that
turns out not to be a problem: we still have analogs of the notions
of linear independence and a basis. More specifically, call d1, . . . , dm
linearly independent over F if

∑
fjdj = 0, with fj ∈ F , implies that

f1 = . . . = fm = 0. Then, if d1, . . . , dm is a linearly independent
set, any two linear combinations

∑
fjdj are distinct unless they have

identical coefficients. This implies that m cannot get arbitrarily large;
more precisely, we must have that |F |m ≤ |D|. It follows that there is
a maximal linearly independent set, in the sense that if any element is



Galois theory 145

added to the set, then it will become linearly dependent. Such a set
spans D because otherwise it would not be maximal.

Exercise 6.45. Give a more explicit version of these steps please; notice
that the assumption that D is a division ring is used here.

By counting linear combinations for such a spanning set, we then
obtain that |D| = qn = |F |m = qdm, so dm = n and thus indeed d|n,
as claimed.

So we can now rewrite (6.11) as follows:

(6.12) qn − 1 = q − 1 +
∑
j

qn − 1

qdj − 1
,

and here dj|n and in fact we also know that dj < n because otherwise xj
would be in the center and the corresponding conjugacy class consists
of a single point and would have been counted by the first term on the
right-hand side of (6.12).

If d|n, then xd − 1|xn − 1 in Z[x] because t − 1|tk − 1 (check this
directly or just observe that t = 1 is a zero of tk − 1) and then we can
substitute t = xd. Now recall that xn − 1 = Φn(x)f(x), with f ∈ Z[x],
and xd−1 does not have any zeros in common with Φn if d < n because
if ζd = 1, then ζ certainly isn’t a primitive nth root of unity. So Φn

divides the polynomial (xn−1)/(xd−1) (in Z[x]) for any divisor d of n
with d < n. Thus (6.12) implies that (the integer) N = Φn(q) divides
q − 1 (in Z).

However, N =
∏

(q − ζ), where ζ ∈ C ranges over the primitive nth
roots of 1, and if ζ 6= 1, then |q − ζ| > q − 1 ≥ 1. Hence if n > 1, then
N > q − 1 and N cannot divide q − 1. It follows that n = 1, but this
says that D = C is commutative, as desired. �

6.5. Galois theory of equations. In this final section, we discuss
the famous classical results of Abel, Ruffini, Galois on the solvability
by radicals (we’ll make this notion precise in a moment) of polynomial
equations f(x) = 0. Throughout this section, we make the following

basic assumption: all fields have characteristic zero.

This will avoid some technical complications later on. As an immediate
pay-off, we obtain that for any polynomial f ∈ F [x], its splitting field
E is Galois over F .

Exercise 6.46. Prove this in more detail please.

In this sense, we can meaningfully speak of the Galois group G =
Gal(E/F ) of a polynomial f ∈ F [x]. Moreover, as we have observed
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(and used) a number of times already, G acts on the zeros a1, . . . , an ∈
E of f . Since E = F (a1, . . . , an), a ϕ ∈ G that acts as the identity map
on {a1, . . . , an} actually is the identity automorphism 1 ∈ G. So the
associated homomorphism G → Sn = S(a1, . . . , an) is injective; one
usually expresses this fact by saying that the action is faithful.

Let’s summarize: the Galois group G of a polynomial f ∈ F [x] is
defined as G = Gal(E/F ), where E is a splitting field of f . If f has n
distinct zeros, then G can be naturally viewed as a subgroup of Sn. An
element of G corresponds to the permutation on these zeros it induces.

Proposition 6.33. Let f ∈ F [x] be a separable polynomial. Then f is
irreducible if and only if its Galois group acts transitively on the zeros.

Recall that an action is called transitive if there is only one orbit, or,
equivalently, if for any two points of the space acted on (here: for any
two zeros of f), there is a group element that sends one to the other.

Proof. If f is irreducible and f(a) = f(b) = 0, then there is a ϕ ∈ G
with ϕ(a) = b by an argument we have already used a number of times,
for example in the proof of Theorem 6.19: first of all, there is an F -
isomorphism F (a)→ F (b) that sends a 7→ b, and this map can then be
extended to an F -automorphism of the splitting field. Here, we make
use of Lemma 5.14 and Theorem 5.17. Alternatively, Lemma 6.21, with
g = f , gives the claim at once.

Conversely, suppose now that G acts transitively on the zeros of f ,
and let g ∈ F [x] be an irreducible factor of f . Let a ∈ E be a zero of
g, and let b ∈ E be an arbitrary zero of f . By assumption, b = ϕ(a)
for some ϕ ∈ G. Since the coefficients of g are fixed by ϕ, this implies
that g(b) = 0 also. In other words, f doesn’t have any zeros that are
not also zeros of g. So g is the only irreducible factor of f , and thus
f = cgk for some k ≥ 1. Since f is separable, we must have k = 1 here,
and f turns out to be irreducible, as claimed. �

Now consider a (monic) quadratic polynomial f(x) = x2 + px + q,
p, q ∈ F , and the associated equation f(x) = 0. Its solutions are given
by the familiar formula

(6.13) x = −p/2±
√
p2/4− q.

Here, as usual, 2 := 1 + 1 ∈ F , 4 := 1 + 1 + 1 + 1; note that 2, 4 6= 0
because char(F ) = 0.

Of course, (6.13) needs to be interpreted suitably in an abstract
setting because the square root is not a field operation. We can work in
the algebraic closure F of F , and then define

√
a as a zero of x2−a; there
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will be exactly two such zeros if a 6= 0 (here we use that char(F ) 6= 2),
and it doesn’t matter which one we take because of the ± in (6.13).

There are really two aspects here that are interesting. First of all
(and quite obviously), (6.13) produces the solutions of f = 0 in a
systematic way from the coefficients of f , or it would be more precise
to say that the formula reduces the task of solving f = 0 to the (simpler
looking) equation x2 = a, for a = p2/4− q. In addition to this, (6.13)
also shows that a splitting field of f can be constructed in a particular
way, by adjoining a root of x2 − a for a suitable a ∈ F . We now make
a precise definition that formalizes this second aspect.

Definition 6.34. A simple radical extension is a field extension E/F
of the form E = F (a), with ak ∈ F for some k ≥ 1. We call E/F
an extension by radicals if there is a sequence of intermediate fields
F = K0 ⊆ K1 ⊆ . . . ⊆ Kn = E such that each Kj is a simple radical
extension of Kj−1, for j = 1, 2, . . . , n.

We say that a polynomial f ∈ F [x] is solvable by radicals if there is
an extension by radicals of F that contains a splitting field of f .

So any quadratic polynomial is solvable by radicals. More precisely,
the simple radical extension E = F (a) by an a ∈ F with a2 = p2/4−q ∈
F is a splitting field, and here [E : F ] = 1 or = 2, depending on whether
or not a ∈ F .

We are now ready for the following spectacular achievement of Galois
theory:

Theorem 6.35 (Galois). Let f ∈ F [x]. Then f is solvable by radicals
if and only if the Galois group of f is solvable.

(Please review Section 3.6 now if you don’t remember this material
clearly.) Now that we have made this connection, the statement ac-
tually sounds quite plausible. The simple radical extensions Kj/Kj−1
from Definition 6.34 will somehow correspond to the abelian quotients
Hj/Hj−1 from a normal series of the Galois group. Before we prove
Theorem 6.35 in detail, let us enjoy some of its consequences.

Corollary 6.36. Any f ∈ F [x] with deg f ≤ 4 is solvable by radicals.

Proof. As we discussed at the beginning of this section, the Galois
group of f can be viewed as a subgroup of Sk, where k is the number
of (distinct) zeros of f in a splitting field. So k ≤ 4 here, and thus
these groups, together with their subgroups, are solvable. �

We knew this already for deg f = 2, from (6.13), and the degree
3, 4 cases can be handled directly, in the same way: there are explicit



148 Christian Remling

formulae that display the zeros of f in terms of the coefficients, using
field operations and roots. These formulae are not nearly as easy to
find as in the degree 2 case, though.

For n ≥ 5, Sn is not solvable, and this means that there could be
polynomials of degree ≥ 5 that are not solvable by radicals; of course,
it doesn’t follow just yet because the Galois group is a subgroup of Sn,
which could be solvable anyway. Let us now try to find such examples.

We’ll do this for F = Q. We can then conveniently construct our
splitting fields as subfields of C.

Theorem 6.37. Let f ∈ Q[x] be an irreducible polynomial of degree
p, with p ≥ 5 prime. Suppose that f has exactly two non-real zeros (in
C). Then the Galois group of f is Sp.

Proof. Since f is irreducible, it has exactly p zeros a1, . . . , ap ∈ C, and
the two non-real zeros are complex conjugates of each other because
the coefficients of f are real. Since f is the minimal polynomial of each
of the aj’s, the splitting field E = Q(a1, . . . , ap) has degree

[E : Q] = [E : Q(a1)][Q(a1) : Q] = p[E : Q(a1)],

which is a multiple of p. This degree is also the order of the Galois group
G, so Sylow’s first theorem now shows that G contains an element of
order p.

Moreover, the complex conjugation automorphism a 7→ a of C/Q
yields another element of the Galois group by restriction to E ⊆ C.
Here, we use that {a1, . . . , ap} is mapped back to itself: indeed, complex
conjugation exchanges the two non-real roots and doesn’t move the
other (real) aj’s at all. This description also clarifies the nature of this
element of the Galois group when (again) viewed as a permutation on
{a1, . . . , ap}: it is a transposition.

Now the proof is finished by referring to Lemma 6.38 below. �

Lemma 6.38. Suppose that p ≥ 2 is a prime. Let H ⊆ Sp be a
subgroup that contains a transposition and a p cycle. Then H = Sp.

Recall that the order of a permutation is the lcm of its cycle lengths
in its cycle decomposition, so the elements of order p are exactly the p
cycles.

Proof. (Warning: There is one small point in the first part of this proof
that I won’t discuss very explicitly; I’ll let you clarify in an Exercise.)
Let’s say the transposition is (12). If we keep applying the p cycle
α, then 1 will move around and will eventually (or maybe quite soon)
visit 2. So a suitable power of α will have the form αk = (12 . . .), and
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by relabeling the remaining points 3, 4, . . . , p if necessary, we may now
also assume that αk = (1234 . . . p).

Now I’ll just repeat what you did (much) earlier in Exercise 2.63(a),
(b): we obtain that (23) = (123 . . . p)(12)(123 . . . p)−1 ∈ H, but then
also (13) = (23)(12)(23) ∈ H. By repeating this procedure, we see
that (1j) ∈ H for all j. Then it follows that all transpositions (jk) =
(1k)(1j)(1k) are in H, and Sp is generated by these. �

Exercise 6.47. Show that S4 is not generated by (12), (1324). So I
must have used the assumption that p is a prime somewhere in the
proof of Lemma 6.38 if the argument was correct. Where exactly?

Example 6.4. Now, with the help of Theorem 6.37, it’s easy to produce
examples of polynomials with non-solvable Galois group. Let’s take a
look at f(x) = x5 − 4x + 2. First of all, this polynomial is irreducible
in Q[x] by Eisenstein’s criterion, Theorem 4.45, with p = 2. We verify
the condition that f has exactly two non-real zeros by basic calculus:
f(0) = 2 > 0, f(1) = −1, and f(x)→ ±∞ as x→ ±∞, so there are at
least three real zeros by the mean value theorem. Then an investigation
of the derivative f ′(x) = 5x4−4 shows that there are exactly three real
zeros. Indeed, f ′ has only two real zeros, at ±(4/5)1/4, but Rolle’s
Theorem says that there is a zero of f ′ between any two zeros of f , so
f can’t have more than three (real) zeros.

So the Galois group of f is S5, by Theorem 6.37, which is not solv-
able. Thus Theorem 6.35 implies that f is not solvable by radicals: it
is not possible to reach the zeros by combinations of field operations
and extraction of roots, applied to rational numbers, and that’s true
whether these rational numbers are related to the coefficients of f or
not!

Exercise 6.48. Let f ∈ Q[x] be as in Theorem 6.37, with zeros a1, . . . , ap.
Recall from Exercise 5.16 that the splitting field is always obtained by
adjoining any p− 1 zeros: E = Q(a1, . . . , ap−1). Show that in the case
at hand, E not generated by p− 2 of the zeros.

Let’s now prove Theorem 6.35. In outline, we already know what we
want to do (see the paragraph following the theorem), but there are
some technical issues we’ll have to address. We prepare for the proof
with a number of auxiliary statements.

Lemma 6.39. Let E1, E2 be intermediate fields of L/F , and suppose
that Ej/F , j = 1, 2, are extensions by radicals. Then F (E1 ∪ E2), the
field generated by E1 and E2, also is an extension by radicals.

Proof. Let’s say we reach E1, starting from F , by successively adjoining
the radicals a1, . . . , am (so a

nj

j is in the previous field for suitable nj ≥
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1), and, similarly, E2 is obtained by adjoining b1, . . . , bn. Then we get
to F (E1 ∪ E2) = F (a1, . . . , am, b1, . . . , bn) by adjoining, say, first the
aj’s and then the bj’s, and each individual step is still a simple radical
extension (possibly of smaller degree than before in the case of the
bj). �

This has the following important consequence:

Lemma 6.40. If E/F is an extension by radicals, then so is its normal
closure.

Proof. Denote a normal closure by E ′, and recall our construction of
E ′ from Definition 6.23 and the discussion following the definition: if
a1, . . . , an are the radicals that are adjoined to get from F to E, then E ′

may be obtained as a splitting field of f = f1f2 · · · fn, where fj ∈ F [x]
is the minimal polynomial of aj over F . So E ′ is generated over F
by the zeros of f . The aj are among these zeros, and by Proposition
6.33 (or Lemma 6.21), applied to the individual factors fj, we can
obtain the other zeros by letting G = Gal(E ′/F ) act on the aj. Recall
in this context that in characteristic zero, irreducible polynomials are
automatically separable.

If we apply a fixed automorphism ϕ ∈ G to a simple radical ex-
tension K(b)/K, then we obtain another such simple radical extension
ϕ(K(b))/ϕ(K). This much is obvious because ϕ(K(b)) = ϕ(K)(ϕ(b))
(prove this more explicitly please if you are not sure), and if bn ∈ K,
then also ϕ(b)n = ϕ(bn) ∈ ϕ(K). It then follows that if K/L is an
extension by radicals, then so is ϕ(K)/ϕ(L), by just applying this ob-
servation to the sequence of simple radical extensions that get us from
L to K.

Now the Lemma follows because E ′ is generated by the fields ϕ(E),
ϕ ∈ G; this follows from our observations made at the beginning of
the proof because, taken together, these fields contain all zeros of f .
Moreover, the field E ′ that they generate is an extension by radicals
by Lemma 6.39 and what we just discussed. �

An obvious question that we certainly want to look at here at some
point is: what is the Galois group of a simple radical extension? In fact,
we already know from the example Q(21/3)/Q that we discussed long
ago that a simple radical extension need not be Galois; see Example
6.2. We will avoid this problem here by adjoining suitable roots of
unity to our fields, and then the situation becomes very pleasant:

Lemma 6.41. Assume that F contains a primitive nth root of unity,
and let a ∈ F . Let b ∈ E be a root of f(x) = xn − a ∈ F [x] in an
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extension E/F . Then F (b) is a splitting field of f , and the Galois
group Gal(F (b)/F ) of f is cyclic.

Proof. This is very similar to what we did in the previous section in
analogous situations; see for example the proof of Theorem 6.31. Let
ζ ∈ F be a primitive nth root of unity. Then ζjb is a zero of f also
for arbitrary j = 0, 1, . . . , n− 1, and these are n distinct zeros (unless
b = 0, but then a = 0 also and everything becomes trivial), so f splits
in E = F (b), as claimed.

An element of G = Gal(E/F ) must send b to another root of f ,
so b 7→ ζjb for some j. We obtain a map G → Zn that sends a
ϕ ∈ G to the j ∈ Zn with ϕ(b) = ζjb (note that since ζn = 1, we
are free to add multiples of n in the exponent, so it is natural to view
this as a map to Zn). This map is a (group) homomorphism because
if ϕ, ψ ∈ G correspond in this way to j and k, respectively, then,
since ζ ∈ F is fixed by elements of the Galois group, we have that
ϕψ(b) = ϕ(ζkb) = ζkϕ(b) = ζj+kb. This homomorphism G → Zn is
injective because E = F (b), so if ϕ(b) = b, then ϕ ∈ G is the identity
automorphism.

So G is isomorphic to a subgroup of the cyclic group Zn and thus
cyclic itself. �

Of course, G need not be isomorphic to the full group Zn here. For
example, we could have a = bn for some b ∈ F , and then E = F and
G = 1.

Exercise 6.49. Give a (less trivial) example of an a ∈ F (take F = Q(ζ)
perhaps, ζ a primitive nth root of unity) for which the Galois group G
of xn − a is isomorphic to a proper subgroup of Zn (but G 6= 1). Can
you in fact characterize, in terms of a condition on f = xn − a, when
G ∼= Zn happens?

We are now ready for the

Proof of Theorem 6.35, first part. In this part, I will show that if f
is solvable by radicals, then f has a solvable Galois group. So let
K0 = F,K1, . . . , KN be a sequence of simple radical extensions, such
that L = KN contains a splitting field E of f . By Lemma 6.40, the
normal closure of L/F will then also be an extension by radicals, so
we can right away assume that L is normal over F , and thus also
Galois, by Theorem 6.20(c), because extensions in characteristic zero
are always separable. Moreover, E, being a splitting field, is also Galois
over F . Thus, by the fundamental theorem, Gal(L/E)EGal(L/F ) and
Gal(E/F ) ∼= Gal(L/F )/Gal(L/E). We want to show that Gal(E/F )
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is solvable, but since quotients of solvable groups are solvable, it now
suffices to show that Gal(L/F ) is solvable.

Let n1, n2, . . . , nN be the exponents of the individual simple radical
extensions: so if Kj = Kj−1(aj), then a

nj

j ∈ Kj−1 (it’s natural to take
nj ≥ 1 as the smallest such integer, but we actually don’t need this).
Let n = n1n2 · · ·nN , and adjoin a primitive nth root ζ of unity to F (F
might already contain such a ζ, of course, and then we do nothing). As
we just discussed, L is Galois over F . By Theorem 6.20(d), this means
that L is the splitting field of a (separable) polynomial g ∈ F [x]. It
then follows that L(ζ) is also Galois over both L and F because this
field is still a splitting field, of xn−1 and (xn−1)g(x), respectively. This
latter polynomial may or may not be separable, but this is not really
an issue here because a polynomial can only fail to be separable in
characteristic zero if some of its (automatically separable) irreducible
factors are repeated, and then we can just drop these extra factors
and the polynomial becomes separable and still has the same zeros as
before.

Moreover, L(ζ)/F is still an extension by radicals: everything is
as before, and there is one extra simple radical extension, by ζ (if
ζ /∈ L). So, by the same argument as above, it now suffices to show
that Gal(L(ζ)/F ) is solvable.

To do this, we actually adjoin ζ (if necessary) in the very first step.
So the situation is as follows now: we have a sequence of simple radical
extensions

F = K0 ⊆ K1 = F (ζ) ⊆ K2 ⊆ K3 ⊆ . . . ⊆ KN+1 = L(ζ);

for j ≥ 2, we have that Kj = Kj−1(aj), a
nj

j ∈ Kj−1 and also ζ ∈ Kj−1.
We now consider the corresponding Galois groups Gj = Gal(L(ζ)/Kj).
Each extension Kj/Kj−1 is Galois: this follows form Lemma 6.41 for
j ≥ 2, and K1 = F (ζ) is a splitting field of xn − 1 over F . Note that
Lemma 6.41 does apply here because Kj−1 for j ≥ 1 also contains an
njth primitive root of unity. Indeed, nj|n, so n = njkj, and then ζkj is
such an njth primitive root.

Since Kj is Galois over Kj−1, the fundamental theorem shows that
Gj E Gj−1, and Gj−1/Gj

∼= Gal(Kj/Kj−1). These groups are abelian,
by Lemma 6.41 for j ≥ 2, and by a generalized version of results from
the previous section for the extension K1/K0 = F (ζ)/F .

Exercise 6.50. Give more details concerning this last claim please.
More specifically, show that for any field F of characteristic zero,
Gal(F (ζ)/F ) is isomorphic to a subgroup of U(Zn). Suggestion: Pro-
ceed exactly as in the proof of Theorem 6.31. (Note that we are making



Galois theory 153

a weaker claim here than in the more specific situation when F = Q,
which should be relatively easy to establish.)

Putting things together, we now see that

Gal(L(ζ)/F ) = G0 DG1 DG2 D . . .DGN+1 = 1

is a normal series for the Galois group with abelian (in fact, cyclic,
except possibly for j = 1) quotients Gj−1/Gj, so this group is solvable,
as desired. �

For the proof of the other direction, we will need a partial converse
of Lemma 6.41. In the proof of this statement, we will make use of the
following formula, valid for any nth root w 6= 1 of unity in any field:

(6.14) 1 + w + w2 + . . .+ wn−1 = 0

Of course, if w = 1, then the sum equals n1.

Exercise 6.51. Prove (6.14).

Lemma 6.42. Let E/F be a Galois extension with [E : F ] = p, p a
prime. Assume that F contains a primitive pth root of unity. Then
E = F (a) is a simple radical extension of F by a pth root (so ap ∈ F ).

Note that under these assumptions, |Gal(E/F )| = p, so the Galois
group is automatically cyclic, of order p.

Proof. Fix a generator ϕ ∈ Gal(E/F ) of the cyclic Galois group, and
let b ∈ E, b /∈ F . Let w ∈ F be a pth root of unity (not necessar-
ily primitive; in other words, w = 1 is possible), and introduce the
Lagrange resolvent

L(w, b) = b+ wϕ(b) + w2ϕ2(b) + . . .+ wp−1ϕp−1(b);

here ϕj(b) means ϕ applied j times to b. Then ϕ(L(w, b)) = w−1L(w, b),
since w ∈ F is fixed by ϕ. Thus ϕ(Lp) = Lp. Since ϕ generates
the whole Galois group and the extension is Galois, this means that
L(w, b)p ∈ F .

Now let ζ ∈ F be a primitive pth root of unity. I claim that then
L(ζk, b) /∈ F for at least one value of k = 0, 1, . . . , p − 1. To see this,
consider

p−1∑
k=0

L(ζk, b) =

p−1∑
j=0

ϕj(b)

p−1∑
k=0

ζjk = pb.

We evaluated this last sum over k with the help of (6.14), with w = ζj.
This is a pth root of unity, and it is equal to 1 precisely if j = 0. Since
pb /∈ F (this step uses that char(F ) = 0), it cannot be the case that
L(ζk, b) ∈ F for all k, exactly as claimed.
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Now we can take a = L(ζk, b), where k is chosen such that a /∈ F .
Then, as we saw above, ap ∈ F , and F (a) is an intermediate field % F
of E/F . However, this extension had prime degree p, so does not have
proper intermediate fields, and thus it follows that F (a) = E. �

As a final preparation, we again take a look at the effect of adjoining
extra elements to a given extension:

Lemma 6.43. Let G be the Galois group of f ∈ F [x] over F , and let
E be an extension field of F . Then the Galois group H of f over E is
isomorphic to a subgroup of G.

Proof. Let’s spell out the set-up more explicitly: we have that H =
Gal(L/E), where L is a splitting field of f overE. So L = E(a1, . . . , an),
where the aj form the complete list of zeros of f (we don’t really need
all of them here, to generate the splitting field, but this agreement will
come in handy in a moment). Then K = F (a1, . . . , an) is a splitting
field of f over F because f splits in K because this field contains all
zeros of f , and K as an extension of F is generated by these zeros; also
note that everything takes place in the larger field L, so it does make
sense to adjoin the aj ∈ L to F ⊆ L. With these notations, we then
have that G = Gal(K/F ).

Now K ⊆ L is mapped back to itself by any ϕ ∈ H because such an
automorphism permutes the aj and fixes F ⊆ E pointwise. Thus re-
striction of ϕ ∈ H to K produces an element of G = Gal(K/F ). More-
over, this restriction map respects composition of automorphism, so is
a homomorphism H → G between the Galois groups. This homomor-
phism is injective because if ϕ ∈ H is the identity map after restricting
to K, then, since a1, . . . , an ∈ K, it must act as the identity permuta-
tion on the aj, but then it also was the identity on L = E(a1, . . . , an).
So it follows that H is isomorphic to a subgroup of G, as claimed. �

Proof of Theorem 6.35, second part. So now we assume that f ∈ F [x]
has a solvable Galois group, and I want to show that then f is solvable
by radicals. I will again adjoin a primitive nth root ζ to F , where
n = [E : F ], and E is a splitting field of f . Then E(ζ) is a splitting
field of f over F (ζ), and the Galois group G = Gal(E(ζ)/F (ζ)) of f
over F (ζ) is still solvable, by Lemma 6.43 and the fact that subgroups
of solvable groups are solvable.

By Theorem 3.41, this group has a composition series G B G2 B
. . . B GN = 1 with cyclic quotients Gj/Gj+1 of prime orders. By the
fundamental theorem, the subgroups Gj correspond to intermediate
fields Kj, such that Gj = Gal(E(ζ)/Kj). In particular, K1 = F (ζ)
and KN = E(ζ). By the fundamental theorem (or, more explicitly,
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Corollary 6.6(b)), E(ζ) is Galois over each Kj, and since Gj+1 =
Gal(E(ζ)/Kj+1) E Gj, we also conclude that Kj+1/Kj is Galois, with
Galois group Gj/Gj+1

∼= Zpj for some prime pj. Now Lemma 6.42
clarifies the nature of the extension Kj+1/Kj: it is a simple radical
extension. Recall that we adjoined ζ ∈ F (ζ) ⊆ Kj, and ζ was a prim-
itive nth root of unity. Moreover, |G| divides n (G is isomorphic to a
subgroup of Gal(E/F ), which has order n), and |G| = p1p2 · · · pN−1.
Thus a suitable power of ζ is a primitive pjth root of unity, and Lemma
6.42 does apply.

We have shown that we get from F (ζ) to E(ζ), which contains a
splitting field of f over F , by a sequence of simple radical extensions.
Since F (ζ)/F also is a simple radical extension (F (ζ) is a splitting field
of xn − 1 over F ), it follows that f ∈ F [x] is solvable by radicals, as
claimed. �

While this was interesting, it addresses the most obvious question
about polynomial equations only in a somewhat roundabout way: Is
there a general formula, in the style of (6.13), that produces the roots
of a general polynomial of degree n in terms of its coefficients, by using
field operations and radicals? In other words, I want a “formula” (and
I don’t want to worry right now about what exactly that means) that
works for all polynomials of a given degree, not just for particular
examples.

We can formalize this as follows. Let F be the field (of characteris-
tic zero, as always in this section) that I want to work in. Then con-
sider F (t1, t2, . . . , tn), the field of rational functions in n indeterminates
t1, . . . , tn. Strictly speaking, we haven’t formally defined this field yet,
but it is of course clear how we want to proceed. First of all, the poly-
nomial ring F [t1, . . . , tn] in several indeterminates t1, . . . , tn could be
defined inductively as F [t1, t2] = (F [t1])[t2], F [t1, t2, t3] = (F [t1, t2])[t3],
and so on, but it’s better to think of F [t1, . . . , tn] as formal polynomials∑
ak1...knt

k1
1 · · · tknn , and these are added and multiplied in the obvious

way.

Exercise 6.52. Show that the following (natural) generalization of The-
orem 4.15 holds: If ψ : F → S is a (ring) homomorphism, and
u1, . . . , un ∈ S, then there is a unique homomorphism ϕ : F [t1, . . . , tn]→
S that extends ψ and sends ϕ(tj) = uj.

The field of rational functions F (t1, . . . , tn) is then defined as the
field of fractions of F [t1, . . . , tn]; in more concrete terms, the elements
of this field are represented by formal rational functions in t1, . . . , tn,
and again it’s clear how to add and multiply these.
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With these preliminaries out of the way, consider now the polynomial
f ∈ F (t1, . . . , tn)[x]

f(x) = xn + t1x
n−1 + t2x

n−2 + . . .+ tn.

Since the coefficients are indeterminates, this deserves to be called the
general (monic) polynomial of degree n. I would then like to know: is f
solvable by radicals? This seems to be the proper formalization of the
question I asked earlier: a positive answer to this question would mean
that the zeros of f can be produced from elements of F (t1, . . . , tn), or,
equivalently, from the elements of F and the coefficients tj, using field
operations and extraction of roots. This would be the “formula” I was
hoping for.

By Theorem 6.35, we can attack this question by computing the
Galois group of f . This becomes much easier if we start over and ap-
proach things slightly differently. More specifically, let again x1, . . . , xn
be indeterminates, and consider g ∈ F (x1, . . . , xn)[x],

(6.15) g(x) =
n∏
j=1

(x− xj).

Instead of general coefficients, this polynomial has general zeros. If we
multiply out, then we find that

g(x) = xn − s1xn−1 + s2x
n−2 − . . .+ . . .+ (−1)nsn,

where the sj are the elementary symmetric polynomials in x1, . . . , xn.
More precisely, these are given by

(6.16) s1 =
n∑
j=1

xj, s2 =
∑

1≤j1<j2≤n

xj1xj2 , . . . , sn = x1x2 · · ·xn.

The sk are indeed symmetric in the sense that

sk(xπ(1), xπ(2), . . . , xπ(n)) = sk(x1, x2, . . . , xn)

for any permutation π ∈ Sn. This can be checked from the definition
(6.16), but it’s even easier to observe that g from (6.15) is obviously
invariant under a permutation of the xj, and thus so are its coefficients
sk.

We have seen that in fact g has coefficients from F (s1, . . . , sn), and
this is a proper subfield of F (x1, . . . , xn) (if n > 1) because its mem-
bers are symmetric rational functions (more precisely: rational func-
tions that have a symmetric representation), and clearly F (x1, . . . , xn)
contains rational functions that are not symmetric, such as f = x1.
Moreover, F (x1, . . . , xn) is a splitting field of g ∈ F (s1, . . . , sn)[x].
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It seems plausible that the Galois group of g ∈ F (s1, . . . , sn)[x] is
isomorphic to the Galois group of f ∈ F (t1, . . . , tn)[x] because we would
probably expect a polynomial with general coefficients to have general
zeros also, so there should be no essential difference between f and g.
I’ll give a formal proof of this claim about the Galois groups below,
which will then not look very quick, but this is so mainly because
setting up notations will be mildly tedious.

Exercise 6.53. Show that g is irreducible over F (s1, . . . , sn).

Theorem 6.44. The general polynomial of degree n has Galois group
G ∼= Sn.

If we combine this with Theorem 6.35, then we obtain as an imme-
diate consequence:

Corollary 6.45 (Abel-Ruffini). The general polynomial of degree n is
solvable by radicals if and only if n ≤ 4.

In more intuitive terms: there is a general formula that delivers the
roots of a polynomial in terms of its coefficients, using field operations
and extraction of roots, if and only if the degree is at most 4.

Proof of Theorem 6.44. As already announced, I’ll discuss the Galois
group of g over F (s1, . . . , sn), and I assume (for now) the fact that this
is the same as the Galois group of f over F (t1, . . . , tn).

We already observed that F (x1, . . . , xn) is a splitting field, and we
also know that we may identify elements of the Galois group with the
permutations of the roots x1, . . . , xn that they induce.

For any π ∈ Sn, we have an isomorphism ϕ0 of the polynomial
ring F [x1, . . . , xn] that sends a 7→ a, a ∈ F , and xj 7→ xπ(j); see
Exercise 6.52. This extends to an isomorphism ϕ of the field of frac-
tions F (x1, . . . , xn), by mapping ϕ(f/g) = ϕ0(f)/ϕ0(g) (in more formal
style, you can also deduce this from Theorem 4.14 with F = F (R) =
F (x1, . . . , xn)). (Really all I’m saying in this paragraph is that given
π ∈ Sn, if you now send a rational function to the same rational func-
tion, but with the variables reshuffled according to π, then this map is
an automorphism of F (x1, . . . , xn), and this you can check directly, if
you prefer.)

Since each sk is clearly invariant under ϕ, the whole field F (s1, . . . , sn)
is fixed by ϕ, and thus ϕ ∈ G = Gal(F (x1, . . . , xn)/F (s1, . . . , sn)). So,
to summarize, an arbitrary permutation π ∈ Sn corresponds to an el-
ement of the Galois group that permutes the roots xj according to π.
Thus G ∼= Sn, as claimed. �
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Exercise 6.54. Show that a symmetric (that is, invariant under ar-
bitrary permutations of the indeterminates) rational function f/g ∈
F (x1, . . . , xn) lies in F (s1, . . . , sn). (This is almost, but not quite,
the fundamental theorem of symmetric polynomials, which says that
a symmetric polynomial is a polynomial of the elementary symmetric
polynomials.)

Finally, and as promised, let me show how to identify the field exten-
sions E/F (t1, . . . , tn) and F (x1, . . . , xn)/F (s1, . . . , sn); here, E denotes
a splitting field of f over F (t1, . . . , tn). Let’s make this more concrete
and denote the zeros of f in E by b1, b2, . . . , bn; here, I repeat mul-
tiple zeros according to their multiplicity (if we already assume what
we are about to show, then it follows that there are no such multiple
zeros, by Exercise 6.53). Then E = F (t1, . . . , tn, b1, . . . , bn). In fact,
by multiplying out the factorization f =

∏
(x − bj) of f in E[x], we

again see that the tj = (−1)jsj(b1, . . . , bn) are (elementary symmetric)
polynomials in the bj, so we also have that E = F (b1, . . . , bn).

I would now like define a homomorphism

ϕ : F (t1, . . . , tn)→ F (s1, . . . , sn),(6.17)

ϕ(a) = a, a ∈ F, ϕ(tj) = (−1)jsj.

To confirm that this can be done, we start out by mapping the polyno-
mial ring, which is possible by Exercise 6.52 (the tj are indeterminates).
I then want to extend this map ϕ0 : F [t1, . . . , tn]→ F [s1, . . . , sn] to the
field of fractions F (t1, . . . , tn) of F [t1, . . . , tn]; this extension will take
values in the field F (s1, . . . , sn). I will be able to do this if (and only
if) ϕ0 is injective. To verify this property of ϕ0, consider the simi-
larly defined map ψ : F [x1, . . . , xn] → E that sends a 7→ a, a ∈ F ,
and ψ(xj) = bj. Since the range of ϕ0 is contained in the domain of
ψ, we can compose these maps. Moreover, ψϕ0(tj) = ψ((−1)jsj) =
(−1)jsj(b1, . . . , bn) = tj and of course ψϕ0(a) = a for a ∈ F , so ψϕ0 is
the identity on F [t1, . . . , tn]. In particular, it follows that ϕ0 is injective,
as desired. So we do have a well defined map ϕ as in (6.17)

Since ϕ is clearly surjective also (F and the sj are in the image), we
have an isomorphism of the ground fields F (t1, . . . , tn) ∼= F (s1, . . . , sn).
By Theorem 5.17, this may be extended to an isomorphism of the
splitting fields E ∼= F (x1, . . . , xn). Here, we make use of the fact that f
gets mapped to g by our map, if we also send the extra indeterminate
to itself: x 7→ x. This follows because tj 7→ (−1)jsj, and these are
the coefficients of f and g, respectively. So we have isomorphic field
extensions, and thus the Galois groups will be isomorphic, too.
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Exercise 6.55. Give a more formal argument please for this (intuitively
obvious) fact. More precisely, suppose that Ej/Fj, j = 1, 2, are field
extensions, with Galois groups Gj = Gal(Ej/Fj), and suppose that
ϕ : E1 → E2 is an isomorphism that also maps F1 onto F2. Show that
then G1

∼= G2.


