
5. Fields

5.1. Field extensions. Let F ⊆ E be a subfield of the field E. We
also describe this situation by saying that E is an extension field of F ,
and we write E/F to express this fact. If E/F is a field extension and
S ⊆ E, then there is a smallest subfield of E that contains F and S.
We denote it by F (S). If S = {u1, . . . , un}, then we of course write
F (u1, . . . , un) for this field, as usual.

Exercise 5.1. Prove the existence of such a smallest subfield F (S), and
show that (F (S))(T ) = F (S ∪ T ).

Exercise 5.2. Show that F (S) =
⋃
F (T ), where the union is taken over

the finite subsets T ⊆ S.

Let’s now describe F (u), u ∈ E, more explicitly. We discussed the
analogous problem for rings in Section 4.3, and we denoted the subring
generated by F and u by F [u]. Its elements are f(u), for f ∈ F [x].
We also know from our more detailed analysis of Section 4.4 that two
cases are possible here: in the first case, u is algebraic over F . Recall
that this means that f(u) = 0 for some f ∈ F [x], f 6= 0. We then
introduced the minimal polynomial of u over F as the unique monic
polynomial f with f(u) = 0 of smallest possible degree. In the sequel,
we will occasionally use the notation fu for the minimal polynomial
of u. We also saw in Proposition 4.22 that F [u] ∼= F [x]/(f) and now
Theorem 4.23 says that this ring F [x]/(f) is either a field or not a
domain. The second case arises precisely if (f) is reducible. However,
we cannot be in this second case here because F [u] ⊆ E certainly is a
domain.

It follows that if u is algebraic, then its minimal polynomial fu ∈ F [x]
is irreducible and F (u) = F [u] ∼= F [x]/(fu).

On the other hand, if u is transcendental, then F [u] ∼= F [x], and this
is not a field, so F (u) % F [u] in this case. We can now also describe
F (u) as the subfield generated by F [u]. In other words, we are looking
for the smallest subfield of E that contains the domain F [u]. This kind
of assignment, build a minimal field out of a domain, is what the field of
fractions construction achieves (in fact, the original construction took
place in a more challenging situation, where the domain was not right
away contained in a field). So we now obtain that

F (u) =
{
f(u)g(u)−1 : f, g ∈ F [x], g 6= 0

}
.

Of course, you don’t need to be familiar with the field of fractions to
arrive at this answer; this can be written down and checked directly.
The field of fractions construction does become relevant if you want to
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embed F [x] in a field. As we know from Section 4.2, the smallest such
field is the field of fractions of F [x]; we’ll denote this by F (x). Let’s
state this as a formal definition:

Definition 5.1. The field of rational functions F (x) is defined as the
field of fractions of the polynomial ring F [x].

As the terminology suggests, the elements of F (x) are the formal
rational functions f(x)/g(x), with f, g ∈ F [x], g 6= 0, and these are
multiplied and added in the expected way. Moreover, f1/g1 and f2/g2
represent the same element of F (x) precisely if f1g2 = f2g1 in F [x].

If u ∈ E is transcendental over F , then F (u) ∼= F (x); an isomor-
phism is obtained by mapping f/g ∈ F (x) to f(u)g(u)−1.

Exercise 5.3. (a) Let ϕ : F → F ′ be a (ring) homomorphism between
fields. Show that ϕ is injective.
(b) Let u be algebraic, and try to map F (x)→ F (u), f/g 7→ f(u)g(u)−1,
as we did above in the other case, when u is transcendental. Is this
still a homomorphism?

Exercise 5.4. Let E/F be a field extension, and let u ∈ E be algebraic
over F . (a) Let g ∈ F [x]. Show that g(u) = 0 if and only if fu|g.
(b) Now let h ∈ E[x] with h(u) = 0. Can you still conclude that fu|h
(in E[x])?
(c) Show that if g ∈ F [x] is an irreducible monic polynomial with
g(u) = 0, then g = fu.

Let’s summarize what we have found so far.

Theorem 5.2. Let E/F be a field extension, and let u ∈ E.
(a) If u is algebraic, then its minimal polynomial fu is irreducible in
F [x]. It can in fact be characterized as the unique irreducible monic
polynomial with f(u) = 0; equivalently, fu is the unique monic poly-
nomial of smallest possible degree with f(u) = 0. Moreover, F (u) =
F [u] ∼= F [x]/(fu).
(b) If u is transcendental, then F (u) % F [u]; we have that F (u) ∼=
F (x).

Such an extension E/F , with E = F (u) generated by a single ele-
ment u ∈ E, is also called a simple extension, and u is called a primitive
element.

The next easy but far-reaching idea will be to view the extension
field as a vector space over the ground field. Indeed, if E/F is a field
extension, then E is an F -vector space: we add elements of E and
multiply them by elements of F just like before, and we ignore the
extra option of multiplying two “vectors” x, y ∈ E. We denote dimE,
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as an F -vector space, by [E : F ], and we also refer to this dimension as
the degree of the field extension. If the degree is finite, we also speak
of a finite extension (meaning: finite dimensional extension).

Theorem 5.3. Let E/F , E = F (u), be a simple field extension. Then
u is algebraic if and only if E/F is finite. In this case, [E : F ] = deg fu.

Proof. If u is transcendental, then 1, u, u2, . . . are linearly independent
because otherwise we would obtain a polynomial f ∈ F [x], f 6= 0, with
f(u) = 0.

If u is algebraic and n = deg fu, then I claim that 1, u, . . . , un−1

is a basis of E as an F -vector space. To confirm this, observe first
of all that these elements are linearly independent, by the argument
from the previous paragraph: if we had a linear relation a0 + a1u +
. . . + an−1u

n−1 = 0 with coefficients aj ∈ F , not all equal to zero,
then we would obtain a (monic, after division by the highest non-zero
coefficient) polynomial g ∈ F [x], g 6= 0, with g(u) = 0, deg g < n,
but this contradicts the definition of the minimal polynomial as the
polynomial of smallest possible degree for which this happens.

To see that 1, u, . . . , un−1 span E, recall that E = F [u], so any
element of E is a linear combination of powers uj, j ≥ 0. Now from
fu(u) = 0, we obtain a formula of the type un = bn−1u

n−1 + . . . + b0.
So powers uj with j ≥ n may be expressed in terms of powers with
smaller exponents, and by applying this repeatedly, we can completely
eliminate powers uj with j ≥ n from our linear combination. �

Example 5.1. Clearly C = R(i), and since 1, i is a basis of C over R,
we have that [C : R] = 2; this is of course consistent with fi = x2 + 1.
So if u ∈ C is an arbitrary complex number, then [R(u) : R] = 1 or
= 2. The first case means that u ∈ R, and then fu = x− u. If u /∈ R,
so [R(u) : R] = 2 and thus R(u) = C, then Theorem 5.3 tells us that
deg fu = 2. It follows from this that no f ∈ R[x] with deg f ≥ 3 is
irreducible.

Exercise 5.5. Please give a more detailed argument for this step; use
the fundamental theorem of algebra, which says that every non-constant
f ∈ C[x] has a zero in C.

This could have been seen directly, as follows. Let a ∈ C be a zero
of f ∈ R[x], deg f ≥ 3 (again, we are using the fundamental theorem
of algebra here). If a ∈ R, then (x − a)|f and f is not irreducible.
If a /∈ R, then we observe that f(a) = 0 also, so (x − a)(x − a) =
x2 − (2 Re a)x+ |a|2 ∈ R[x] divides f , and again f is reducible.
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Exercise 5.6. (a) Show that f(x) = x3 + 9x + 6 ∈ Q[x] is irreducible;
(b) Let u ∈ C be a zero of f (it doesn’t matter which one). Express
(1 + u)−1 ∈ Q(u) as a linear combination of the basis elements 1, u, u2.

Next, we show that repeated finite field extensions produce another
finite extension:

Theorem 5.4. Suppose that L/E, E/F are finite field extensions.
Then L/F is finite and [L : F ] = [L : E][E : F ].

Proof. Let a1, . . . , am be a basis of E over F , and let b1, . . . , bn be a
basis of L over E. I then claim that {ajbk : 1 ≤ j ≤ m, 1 ≤ k ≤ n} is
a basis of L as an F -vector space.

Clearly, this set spans L because an arbitrary element of L can be
written as a linear combination

∑
ckbk with coefficients ck ∈ E, and

then we can similarly expand ck =
∑
dkjaj, with coefficients dkj ∈ F .

A similar argument establishes that the ajbk are linearly indepen-
dent: suppose that

∑
djkajbk = 0, with coefficients djk ∈ F . Then∑

j djkaj ∈ E, so the linear independence of the bk over E now implies

that
∑

j djkaj = 0 for all k, but then the linear independence of the aj
shows that djk = 0 for all j, k. �

Definition 5.5. A field extension E/F is called algebraic if every u ∈
E is algebraic over F .

Exercise 5.7. Deduce from Theorem 5.3 that a finite field extension is
algebraic.

Theorem 5.6. Suppose that L/E, E/F are algebraic field extensions.
Then L/F is algebraic.

This is not just an immediate consequence of Theorem 5.4 because
the converse of Exercise 5.7 does not hold: algebraic extensions need
not be finite.

Proof. Let u ∈ L, and let fu ∈ E[x] be its minimal polynomial over E.
Let a0, . . . , an ∈ E be the coefficients of fu. Then u is also algebraic
over F (a0, . . . , an) ⊆ E, with the same minimal polynomial as over E,
so F (u, a0, . . . , an)/F (a0, . . . , an) is a finite extension, by Theorem 5.3.

Observe that F (a0)/F is a finite extension because a0 ∈ E is alge-
braic over F . Next, F (a0, a1)/F (a0) is also finite because a1 is alge-
braic over F and thus also over the larger field F (a0). Continue in
this style and then apply Theorem 5.4 repeatedly. We conclude that
F (a0, . . . , an)/F is finite. Then one more application of Theorem 5.4
shows that F (u, a0, . . . , an)/F and thus also F (u)/F are finite as well.
Now Theorem 5.3 implies that u is algebraic over F , as desired. �
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Theorem 5.7. Let E/F be a field extension. Define

A = {a ∈ E : a is algebraic over F}.

Then A is a field, and F ⊆ A ⊆ E.

Proof. The inclusions are clear because every a ∈ F is algebraic, with
minimal polynomial fa = x− a. So we must show that A is a subfield
of E. Let a, b ∈ A. We must show that then a− b and ab−1 (if b 6= 0)
are in A as well.

Now F (a, b)/F is a finite extension, by the same arguments as in the
previous proof (adjoin a, b separately and successively and observe that
each individual extension is finite). Moreover, a− b, ab−1 ∈ F (a, b), so
F (a − b) ⊆ F (a, b) also is a finite extension of F , and thus a − b is
algebraic by Theorem 5.3 (and similarly for ab−1). �

Example 5.2. Consider the field extension C/Q, and form the interme-
diate field A of algebraic numbers, as in Theorem 5.7. The theorem
guarantees that any combination of algebraic numbers (using field op-
erations) will be algebraic again. For example, a =

√
2 +
√

3 and
b = (51/3 − 1)/(31/5 − 21/6) are algebraic. In more concrete terms, this
means that a, b are zeros of polynomials with rational coefficients. It is
not really very clear how to produce such polynomials systematically
from the fact that the ingredients

√
2,
√

3 etc. satisfy polynomial equa-
tions, so the proof of Theorem 5.7 is a nice illustration of the power of
abstract tools.

Observe also that while A/Q is of course algebraic, by construction,
this extension is not finite. For example, 21/n has minimal polynomial
f = xn − 2. To confirm this, we can refer to Eisenstein’s criterion
with p = 2 to establish that f is irreducible, so must be the minimal
polynomial. Since deg f = n, it follows that [Q(21/n) : Q] = n, so
[A : Q] ≥ n, and this holds for arbitrary n ≥ 1.

On the other hand, A is still a countable field because a given poly-
nomial f ∈ Q[x] is the minimal polynomial of at most deg f different
numbers and there are only countably many polynomials f ∈ Q[x].

Exercise 5.8. Find the minimal polynomials fa ∈ Q[x] of a =
√

2 +
√

3
and a = (1 + 21/3)−1.

Exercise 5.9. Show that 21/6 /∈ Q(21/10).

Exercise 5.10. Consider a field extension E/F , and let a ∈ E be tran-
scendental. Show that then every b ∈ F (a), b /∈ F , is transcendental
over F .
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Exercise 5.11. Let E/F be a field extension. Suppose that a ∈ E is
algebraic, with a minimal polynomial of odd degree. Show that then
F (a2) = F (a).

Exercise 5.12. Let E/F be an algebraic field extension, and suppose
that R is a ring with F ⊆ R ⊆ E (and R is a subring of E). Show that
R is a field.

Finally, recall our discussion of the prime ring of a given ring R from
pg. 71. This was defined as the smallest subring of R. Also recall the
notion of the characteristic of a ring R, defined as the smallest integer
n ≥ 1 for which n1 = 1 + 1 + . . . + 1 = 0, or char(R) = 0 if there is
no such n. If char(R) = n, then the prime ring is isomorphic to Zn,
and it is isomorphic to Z if char(R) = 0. If R = F is a field, then the
characteristic can only be zero or a prime n = p because otherwise Zn
is not a domain.

We now similarly define the prime field of a given field F as the small-
est subfield of F . This can equivalently be described as the smallest
subfield that contains the prime ring of F . If char(F ) = p, then the
prime ring ∼= Zp already is a field and thus coincides with the prime
field. If char(F ) = 0, then we are looking for the smallest field con-
taining a ring ∼= Z, and this will be isomorphic to the field of fractions
of Z, which is Q. We summarize:

Proposition 5.8. The characteristic of a field is zero or a prime p.
The prime field is isomorphic to Q in the first case and to Zp in the
second case. If F is a finite field, then char(F ) = p ≥ 2, and in this
case, |F | = pn for some n ≥ 1.

Proof. Except for the final claims, on finite fields, we discussed this
already. Clearly, a field of characteristic zero is infinite because it
contains a subfield isomorphic to Q. To see that the order of a finite
field is a power of its characteristic, we view it as a vector space over
its prime field P ∼= Zp: if [F : P ] = n, then F ∼= P n as a P -vector
space, so in particular |F | = |P |n = pn. �

Later we will see that for each prime power pn, there is exactly one
finite field, up to isomorphism, of this order.

Exercise 5.13. Are there infinite fields of positive characteristic?

5.2. Splitting fields. Let f ∈ F [x] be a polynomial. We would like
to be able to factor (“split”) f into linear factors f = c

∏
(x− aj). Of

course, this can only work if F contains the roots aj. For example, if
f ∈ Q[x] is f = x2 − 4, then f = (x+ 2)(x− 2), but we cannot factor
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g = x2 − 2 in Q[x] in this way. So, in general, a polynomial will only
split in a suitable extension field E ⊇ F , and such an E must contain
all the roots of f , in the sense that if L ⊇ E is an extension of E, then
all roots of f in L are in fact contained in E.

Exercise 5.14. Can you prove this (unsurprising) fact in more formal
style? So show that if L ⊇ E ⊇ F and f =

∏
(x − aj) in E[x] and

f(b) = 0 for some b ∈ L, then in fact b ∈ E (more precisely, b = aj for
some j).

Definition 5.9. Let f ∈ F [x]. An extension field E ⊇ F is called a
splitting field of f if f(x) = c

∏
(x−aj) in E[x] and E = F (a1, . . . , an).

More generally, if P ⊆ F [x] is a collection of polynomials, then we
call E ⊇ F a splitting field for P if each f ∈ P splits in E and,
moreover, E is generated by the roots of all f ∈ P .

So a splitting field is a field extension that lets us factor a given set
of polynomials into linear factors, and it is minimal with this property
in the sense that it is generated by those roots that we had to adjoin
to make the polynomials split. These roots are of course automati-
cally algebraic over the base field, so the following does not come as a
surprise.

Proposition 5.10. Let E ⊇ F be a splitting field of a set of polyno-
mials P ⊆ F [x]. Then E/F is algebraic.

Proof. We know that E = F (S), where S is the set of roots of the
f ∈ P . Moreover, by Exercise 5.2, F (S) =

⋃
F (T ), with the union

taken over the finite subsets T ⊆ S.
Let a ∈ E. Then, as just observed, a ∈ F (s1, . . . , sn) for suitable

s1, . . . , sn ∈ S, and this extension F (s1, . . . , sn)/F is finite because the
sj are algebraic over F , being roots of polynomials from F [x]. �

Splitting fields are easy to find if we can embed F in a larger field
that contains roots of polynomials in sufficiently large supply. We make
one more definition along these lines.

Definition 5.11. A field F is called algebraically closed if every non-
constant polynomial f ∈ F [x] has a root in F . We call an extension
field E ⊇ F an algebraic closure of F if E/F is algebraic and E is
algebraically closed.

Observe that any polynomial splits in an algebraically closed field
F because if f ∈ F [x] and f(a) = 0, then we can factor out the
corresponding linear factor, f = (x−a)g, but then g ∈ F [x] has a root
too unless g is constant, so we can repeat this step as many times as
needed.
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Example 5.3. Consider F = Q or F = R. In both cases, we have the
field extension C/F , and C is algebraically closed. So if f ∈ F [x] is any
polynomial, then it splits in C, and if the roots are a1, . . . , an ∈ C, then
F (a1, . . . , an) is a splitting field. For example, if f(x) = x2 − 2 ∈ Q[x],
then Q(−

√
2,
√

2) = Q(
√

2) is a splitting field. Splitting fields of sets
of polynomials can be obtained in the same way.

This procedure works for any algebraically closed extension E ⊇ F ;
in particular, we could have taken E as an algebraic closure (if there
is one, but, as we will discuss below, these always exist). This doesn’t
change anything in the case F = R because C is an algebraic closure of
R, but in the case of F = Q, the much smaller extension field A of the
algebraic numbers, as discussed in Theorem 5.7, would have sufficed.
As we will show below, in a more general context, A is an algebraic
closure of Q; see Theorem 5.19(b).

If a field F does not right away come with an algebraically closed
extension, then it is not so obvious how to produce splitting fields; at
this point, we can’t even be sure that these always exist. For example,
f = x2 + x+ 1 ∈ Z2[x] does not have a root in Z2. Is there a splitting
field E ⊇ Z2? Or, more ambitiously, does Z2 have an algebraic closure?

To attack these questions in a general setting, we recall Theorem
5.2(a). If we already had a field extension E/F that contains a root
a ∈ E of a given polynomial f ∈ F [x], then a is also contained in
the potentially smaller extension field F (a), and this can be described
as F (a) = F [a] ∼= F [x]/(fa). We now turn this around to obtain an
extension with a zero.

Lemma 5.12. Let f ∈ F [x] be a non-constant polynomial. Then there
is an extension field E ⊇ F that contains a zero of f .

Proof. It suffices to discuss the case of an irreducible f because a gen-
eral polynomial can be factored into irreducible factors. In that case,
E = F [x]/(f) is a field, and we can think of F as a subfield of E by
identifying a ∈ F with the corresponding constant polynomial. More
formally, we send a 7→ a+ (f) ∈ E to obtain an embedding of F in E;
this works because F ∩ (f) = 0.

Moreover, if we let t := x+ (f) ∈ E, then f(t) = f(x) + (f) = 0 (in
E), so t is the desired root of f . �

In this form, this looks like a rather abstract construction. Note,
however, that we really just implemented the following obvious idea: we
want a field extension that contains a root of an irreducible polynomial
f ∈ F [x]. To do this, just invent a new element, and call it t, say, and
insist that f(t) = 0. If we can make this work, then the field E we’re
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trying to build will be spanned by the powers tj, 0 ≤ j ≤ n− 1, as an
F -vector space, since t is algebraic over F with minimal polynomial f .
We now just add and multiply such linear combinations in the obvious
way; to evaluate products, we also make use of the relation f(t) = 0. It
then needs to be checked that this procedure delivers a field, and this
works best in the abstract style from the proof of Lemma 5.12. Recall
in this context that we can think of F [x] as F with a new element
x adjoined that satisfies no relations. Then passing to the quotient
F [x]/(f) amounts to introducing the relation f(x) = 0.

For example, C ∼= R[x]/(x2+1): we obtain the field E = R[x]/(x2+1)
by adjoining a new element t to R, and this satisfies t2 + 1 = 0. The
elements of E are represented by linear combinations a + bt, a, b ∈ R,
and we add and multiply these formally, and when we multiply, we also
make use of the relation t2 = −1. It is clear (especially if you rename
t = i) that this produces a field isomorphic to C.

Exercise 5.15. What happens when we run the procedure from the
proof of Lemma 5.12 with a polynomial f that already splits in F?

By iterating the basic step from Lemma 5.12, we obtain splitting
fields for individual polynomials:

Corollary 5.13. Let f ∈ F [x]. Then f has a splitting field E ⊇ F .

Proof. Let E1 be a field as in Lemma 5.12, with f(a1) = 0 for some
a1 ∈ E1. Then f = (x − a1)f2 in E1[x]. We now repeat this step to
obtain a field E2 ⊇ E1 with a zero a2 ∈ E2 of f2 etc. until we have
enough zeros aj so that f splits in En. Then E = F (a1, . . . , an) is a
splitting field. �

Example 5.4. Let’s now return to the example f = x2 + x + 1 ∈ Z2[x]
that was mentioned above. This polynomial is irreducible because a
non-unit proper factor would have to be linear, but f(0) = f(1) = 1,
so f has no roots in Z2. Let’s follow the procedure from Lemma 5.12,
in the concrete version discussed after the proof. Let’s form E = Z2(t),
where f(t) = 0. Notice that E is a splitting field already because
f = (x− t)g in E[x], but here g must be linear also, so f splits in E[x].

We have that [E : Z2] = 2 (why?), so the elements of E are a +
bt, a, b ∈ Z2. There are four of these, and we add and multiply in
the obvious way, with help from the relation f(t) = 0 in the case
of multiplication. For example, t(1 + t) = t + t2 = −1 = 1. One
can now check, by comparing the addition and multiplication tables,
that we have recovered the field with four elements from Example 4.5;
in fact, we saw in that example that this field may be obtained as
Z2[x]/(x2 +x+1), which is exactly the construction from Lemma 5.12,
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specialized to our situation. (Also, as mentioned earlier, there is only
one finite field of order pn for any possible order, so it has to be this
one.)

Example 5.5. Consider now f = x3 + x + 1 ∈ Z2[x]. This is again
irreducible, by the same argument: a non-trivial factorization would
have to contain a linear factor, but f(0) = f(1) = 1. Proceed as in the
preceding example and adjoin a root t and form E = Z2(t). This time,
[E : Z2] = 3, so E contains the eight elements a+ bt+ ct2, a, b, c ∈ Z2.
We also have the factorization

f = x3 + x+ 1 = (x− t)(x2 + tx+ t2 + 1) = (x− t)g

(check that this is correct, or run a long division style algorithm to find
this systematically).

Now a splitting field for f must contain roots of g ∈ E[x] also. We
don’t know at this point if these are already in E, or if we need to
adjoin further elements. If we just try out the eight elements of E,
then we find that

g(t2) = t4 + t3 + t2 + 1 = t2 + t+ t+ 1 + t2 + 1 = 0

(recall that char(E) = 2, so a+ a = 0 for all a ∈ E). So g does have a
zero in E, and since deg g = 2, this means that g splits in E. We have
shown that E is a splitting field of f .

Exercise 5.16. Find the third root of f in E.

Example 5.6. Let’s now discuss f(x) = x2−2 ∈ Q[x] in the same style,
by successively adjoining roots. We already observed earlier that our
task is easier here because C ⊇ Q is an algebraically closed extension,
and splitting fields can be obtained as subfields of C. We adjoint t1 =√

2 and form E1 = Q(
√

2). Obviously, E1 contains a second root
t2 = −

√
2, and f = (x −

√
2)(x +

√
2) splits completely already in

E = E1. Notice that [E : Q] = 2.
Now let’s look at f = x3 − 2 ∈ Q[x] in the same way. We adjoin

t1 = 21/3, form E1 = Q(21/3), and split off x − 21/3 in E1[x]. This
gives f = (x − 21/3)(x2 + 21/3x + 22/3) = (x − 21/3)g. We of course
know that the zeros of g in C are 21/3e2πik/3, k = 1, 2. These are
not in E1; the elements of E1 are a + b21/3 + c22/3, a, b, c ∈ Q, and
these are all real. Therefore, we must adjoin another zero, let’s say
t2 = 21/3e2πi/3, and form E2 = E1(t2) = Q(t1, t2). Now f splits in
E = E2, so this is a splitting field. We obtained E2 from Q by first doing
a three-dimensional extension and then a two-dimensional extension,
so [E : Q] = 2 · 3 = 6.
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Exercise 5.17. Let E ⊇ F be a splitting field of f ∈ F [x], and thus
f(x) = (x − a1)(x − a2) · · · (x − an) in E[x]. Show that then E =
F (a1, a2, . . . , an−1).

Exercise 5.18. Let f ∈ F [x], deg f = n, and let E ⊇ F be a splitting
field of f . Show that then [E : F ] ≤ n!.

Exercise 5.19. Let E be a splitting field over Q of: (a) f(x) = x4 − 1;
(b) f(x) = x4 + 1; (c) f(x) = x4 + 2; (d) f(x) = x4 + 4. Find [E : Q]
in each case (this dimension will not depend on how you construct a
splitting field, as we will show below).

Exercise 5.20. Let f ∈ F [x] be irreducible, with deg f = n ≥ 1, and
let g ∈ F [x] be an arbitrary polynomial. (a) Show that h(x) = f(g(x))
need not be irreducible; (b) show that the degree of each irreducible
factor of h is a multiple of n. Suggestion: Let a be a zero of h in a
splitting field. What can you say about [F (a) : F ]?

Next, we discuss uniqueness of splitting fields. We return to Lemma
5.12, and we now want to show that the underlying procedure (adjoin
a root of an irreducible polynomial) always gives the same result in
the sense that any simple extension by a root of a given irreducible
polynomial is isomorphic to the one from Lemma 5.12. Basically, this
seems clear already, from the comments on the proof that we made,
but we’ll give a precise formal treatment, and we will in fact consider
a slightly more general situation, which will involve two isomorphic
fields. We will tacitly extend such an isomorphism ϕ : F1 → F2 to an
isomorphism F1[x] → F2[x] of the polynomial rings by mapping field
elements by ϕ and sending x 7→ x. If f1 ∈ F1[x], I’ll just write f2 for
the image of f1 under this isomorphism.

Lemma 5.14. Let Fj be isomorphic fields, with an isomorphism ϕ :
F1 → F2. Let Ej/Fj be field extensions, and suppose that a1 ∈ E1 is al-
gebraic, with minimal polynomial f1 ∈ F1[x]. Suppose that E2 contains
a root a2 of f2 ∈ F2[x]. Then ϕ may be extended to an isomorphism
ϕ : F1(a1)→ F2(a2) that sends a1 7→ a2.

Proof. We’ll make two attempts here, the first one in concrete style,
and then a more abstract version of essentially the same argument,
more in line with the proof of Lemma 5.12 we gave above.

Observe first of all that f1 is irreducible, being a minimal polynomial,
and thus so is f2. If n denotes the (common) degree, then [Fj(aj) :
Fj] = n, and a basis is given by the powers akj , k = 0, 1, . . . , n− 1. So
if we want a ϕ : F1(a1) → F2(a2) as in the statement of the Lemma,
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we are really forced to map

b0 + b1a1 + . . .+ bn−1a
n−1
1 7→ ϕ(b0) + ϕ(b1)a2 + . . .+ ϕ(bn−1)a

n−1
2 .

Or, in more compact notation, we send g1(a1) 7→ g2(a2), where g1 ∈
F1[x], and g2 ∈ F2[x] is the image of g1 under the isomorphism F1[x]→
F2[x] that is induced by ϕ. At first sight, it seems completely obvious
that this map is a homomorphism, but something must be missing here
because we will certainly have to use the fact that f2(a2) = 0 at some
point.

Exercise 5.21. Can you elaborate on this? Complete the argument
please. What goes wrong here if we take other elements a2 ∈ E2

instead of a root of f2?

Now let’s start over and give a second proof, or it would perhaps
be more accurate to say that we are going to give a second, abstract
version of the same argument. Recall that Fj(aj) ∼= Fj[x]/(fj). More
specifically, we map Fj[x] → Fj(aj), b 7→ b (b ∈ Fj), x 7→ aj, and
since the kernel of this map is the ideal (fj), we obtain an isomorphism
between Fj[x]/(fj) and Fj(aj). This isomorphism maps x + (fj) 7→
aj. We can now obtain the desired isomorphism from the following
diagram:

F1[x]
ϕ

//

q1
�� ((

F2[x]

q2
��

F1[x]/(f1)
ψ

// F2[x]/(f2)

First obtain a homomorphism along the diagonal by composing q2 ◦ϕ.
Since ϕ is an isomorphism, the kernel of this map is ϕ−1((f2)) = (f1),
and this is exactly the kernel of q1, so by factoring through this quotient
F1[x]/(f1), we obtain an isomorphism ψ along the bottom row. Since
ϕ(x) = x, we have that ψ(x+(f1)) = x+(f2), so if we now identity the
quotients Fj[x]/(fj) with the Fj(aj), using the isomorphisms that were
set up above, then b 7→ ϕ(b) for b ∈ F1 and a1 7→ a2, as desired. �

Definition 5.15. Let E/F be a field extension. We say that two
elements a, b ∈ E are conjugates if they (are algebraic and) have the
same minimal polynomial.

For example, ±
√

2 are conjugates in C/Q because both elements
share the minimal polynomial f = x2 − 2.

Exercise 5.22. Consider the field extension C/Q. Find all conjugates
of the following elements a ∈ C: (a) a = 1 +

√
5; (b) a = 1 + i; (c)

a = (1 + i)/
√

2
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If we specialize Lemma 5.14 to F1 = F2 =: F , E1 = E2 =: E, and ϕ
the identity of F , then we obtain that a, b ∈ E are conjugates precisely
if there exists an isomorphism F (a) → F (b) that maps a 7→ b and
leaves F invariant pointwise. We make a formal definition along these
lines:

Definition 5.16. Let Ej/F , j = 1, 2, be field extensions. An F -
homomorphism is a homomorphism ϕ : E1 → E2 that fixes F point-
wise, that is, ϕ(a) = a for all a ∈ F .

In particular, we can consider F -automorphisms of a field extension
E/F ; these are the central objects of Galois theory, and we will study
them in detail in the next chapter.

To state our observation from above one more time in this new ter-
minology, we can now say that if E/F is a field extension, then two
algebraic elements a, b ∈ E are conjugate precisely if there is an F -
isomorphism ϕ : F (a)→ F (b) with ϕ(a) = b. In fact, all this basically
just restates one more time what we noticed earlier, namely that, up
to isomorphism, the relevant information about the algebraic structure
of F (a) is contained in the minimal polynomial of a over F .

Exercise 5.23. Let E/F be a field extension, and assume that a, b ∈ E
are transcendental. Show that there is an F -isomorphism ϕ : F (a) →
F (b) that maps ϕ(a) = b.

Exercise 5.24. Show that extensions by more than one zero of an irre-
ducible polynomial need not be isomorphic. More specifically, find an
example of an irreducible polynomial f ∈ F [x] such that F (a1, a2) 6∼=
F (a3, a4) for suitable zeros aj of f (do this for F = Q perhaps).

Just as iterating the step from Lemma 5.12 gave us the existence of
splitting fields, their uniqueness will now follow by repeatedly applying
Lemma 5.14. As above, we first deal with the following slightly more
general situation: let ϕ : F1 → F2 be an isomorphism, and extend this
to an isomorphism F1[x]→ F2[x], by sending a 7→ ϕ(a), a ∈ F1, x 7→ x.
Let f1 ∈ F1[x], and denote its image by f2 ∈ F2[x].

Theorem 5.17. In the situation just described, if Ej ⊇ Fj is a split-
ting field of fj (j = 1, 2), then ϕ : F1 → F2 can be extended to an
isomorphism E1 → E2.

Corollary 5.18. Let E1, E2 ⊇ F be splitting fields of an f ∈ F [x].
Then E1

∼= E2; in fact, there is an F -isomorphism between these fields.

To obtain the Corollary from the Theorem, we take F1 = F2 = F
and let ϕ : F → F be the identity map.



Fields 115

Proof. As already announced, essentially this just follows by applying
Lemma 5.14 repeatedly. We organize the formal argument as an in-
duction on deg f1. The claim is of course clear if deg f1 ≤ 1 because
then Ej = Fj.

So assume now that deg f1 > 1, and assume also that the claim
holds for all polynomials of smaller degree (= induction hypothesis).
Let a1 ∈ E1 be a root of a monic irreducible factor g1 ∈ F1[x] of
f1. Let a2 ∈ E2 be a root of its image g2 ∈ F2[x]. Now Lemma 5.14
provides an extension of ϕ that maps F1(a1) isomorphically onto F2(a2)
and sends a1 7→ a2. Split off the corresponding linear factors: write
fj = (x − aj)hj, with hj ∈ Fj(aj)[x]. These polynomials have smaller
degree, and Ej is a splitting field of hj over Fj(aj), so now the induction
hypothesis lets us extend to an isomorphism E1 → E2. �

Exercise 5.25. Where in these final steps do we make use of the fact that
the continuation of ϕ (which maps F1(a1)→ F2(a2)) sends a1 7→ a2?

Exercise 5.26. Let p be a prime. Show that the polynomial

xp−1 + xp−2 + . . .+ x+ 1 =
xp − 1

x− 1
∈ Z[x]

is irreducible in Q[x]. Suggestion: Replace x by x + 1 and discuss the
resulting polynomial with the help of Eisenstein’s criterion.

Exercise 5.27. Find a splitting field E ⊆ C and determine [E : Q] for
f(x) = x6 − 1 ∈ Q[x].

Theorem 5.19. (a) An extension field E ⊇ F is an algebraic closure
of F if and only if E is a splitting field for P = F [x].

(b) Let E/F be a field extension, and suppose that E is algebraically
closed. Then the field A of algebraic numbers (compare Theorem 5.7)
is an algebraic closure of F .

Proof. (a) If E is an algebraic closure, then E is in particular alge-
braically closed, so any f ∈ F [x] splits in E. Moreover, any a ∈ E is
algebraic over F , so is a zero of some f ∈ F [x]. This shows that E
is generated by the zeros of the f ∈ F [x], and it follows that E is a
splitting field for F [x].

Conversely, suppose now that E is a splitting field for F [x]. Then
E/F is algebraic by Proposition 5.10. To show that E is algebraically
closed, let f ∈ E[x] be a non-constant polynomial. Let a be a root of f ,
in an extension field E(a) if necessary. Then a is algebraic over E, but
also over F , by Theorem 5.6 and Proposition 5.10. Let fE, fF be the
minimal polynomials of a over E and F , respectively. Then fF ∈ E[x]
also, so fE|fF in E[x]. However, fF =

∏
(x − bj) splits in E. Since
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fE is irreducible, this shows that fE = x − bj, and thus a = bj ∈ E.
We have found a root a ∈ E of f ∈ E[x], and this shows that E is
algebraically closed.

(b) A is clearly a splitting field for P = F [x], so this follows from
part (a). �

So since algebraic closures are also splitting fields (for all polynomi-
als over the base field), we can perhaps expect results similar to the
ones we established above for splitting fields of individual polynomials.
This impression is correct, and in fact the same basic ideas still work.
However, additional technical problems arise, which are not particu-
larly relevant for us, so I’ll just report quickly on this.

Theorem 5.20. (a) Every field has an algebraic closure.
(b) If E1, E2 ⊇ F are algebraic closures of F , then there is an F -
isomorphism between them.

In view of part (b) of the Theorem and Corollary 5.18 above, it also
makes sense to speak of the algebraic closure of a given field and the
splitting field of a polynomial.

Exercise 5.28. Show that the algebraic closure of any field is infinite.
Hint: If E = {a1, a2, . . . , an}, find an f ∈ E[x] with f(aj) 6= 0 for all j.

Exercise 5.29. Do the following fields have irreducible polynomials f ∈
F [x] of arbitrarily high degree? If not, then find the maximal degree
of an irreducible polynomial. (a) F = R; (b) F = C; (c) F = Q; (d)
F = Z2. Suggestion: Use the previous Exercise for part (d).

We are now also in a great position to evaluate, one more time,
Hamilton’s quest for field structures on Rn that come from an algebra
structure. Note that in any algebra A (with multiplicative identity 1),
the field of scalars F is naturally embedded in A via the map F → A,
c 7→ c1; moreover, (algebra) multiplication by c1 ∈ A, c ∈ F , then
is really the same as (scalar) multiplication by c ∈ F . In the case
at hand this means that Rn with a field structure of the desired type
would automatically be a field extension of R, and [Rn : R] = n. Since
this is finite, such a field would be an algebraic extension of R, so the
following observation puts Hamilton’s original hopes to rest once and
for all.

Theorem 5.21. Let F/R be an algebraic field extension. Then F = R
or F ∼= C.

Proof. If F 6= R, then pick an a ∈ F , a /∈ R. Its minimal polynomial
fa ∈ R[x] is irreducible, so must be of degree 2, as discussed above, in
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Example 5.1. Then fa = (x− a)g splits in R(a); note that necessarily
deg g = 1 here. Another splitting field of fa is obtained by letting the
complex roots b, b ∈ C generate a subfield of C, but since b /∈ R, this
is just C itself. So R(a) ∼= C by Corollary 5.18.

Now R(a) does not admit further algebraic extension since this field
is algebraically closed: if b ∈ F , then its minimal polynomial over
R(a) splits over R(a) ∼= C (any polynomial does), so is linear and thus
b ∈ R(a). �

If the requirement of commutativity is dropped, then success is pos-
sible: Hamilton’s quaternions are a four-dimensional R-algebra that,
at the same time, is a division ring. The leap from two dimensions,
for C = R2, to four is necessary. This follows from essentially the
same arguments: an extension by a single element, R(a), is necessarily
two-dimensional because irreducible polynomials of other degrees > 1
are unavailable as minimal polynomials (and minimal polynomials are
irreducible because the extension F ⊇ R is a domain). This part of the
argument does not require commutativity of F , and, in fact, it follows
that R(a) is commutative (and then again R(a) ∼= C) because 1, a is a
possible basis of R(a) as an R-vector space. If R(a) isn’t all of F yet,
then any further extension can be viewed as a C-vector space (though
not as a C-algebra!), and thus its dimension over R is at least 4.

More careful analysis reveals that H, C, R are the only division
rings that are at the same time finite-dimensional algebras over R (or,
in short, they are the only finite-dimensional division algebras over R).


