
4. Rings

4.1. Basic properties.

Definition 4.1. A ring is a set R with two binary operations +, · and
distinguished elements 0, 1 ∈ R such that: (1) (R,+) is an abelian
group with neutral element 0; (2) (R, ·) is a monoid with neutral ele-
ment 1; (3) the distributive laws

a(b+ c) = ab+ ac, (a+ b)c = ac+ bc

hold for all a, b, c ∈ R.

Here, we have already implicitly assumed the usual convention that
multiplication binds more strongly than addition, so ab + ac is really
short-hand for (ab) + (ac).

We write −a for the additive inverse of an a ∈ R, and we then use
the familiar and convenient subtraction notation for what is really the
addition of an additive inverse: we write a− b := a+ (−b).
Exercise 4.1. Show that −(ab) = (−a)b = a(−b), so in particular
−a = (−1)a = a(−1). Moreover, subtraction in a ring also obeys
distributive laws: a(b− c) = ab− ac, (a− b)c = ac− bc
Example 4.1. Familiar examples of rings are Z, Q, R, C with the usual
operations. Another example is given by Zk; you showed in Exercise
1.11 that +, · on Zk have the required properties. In the definition, we
do not insist that 0 6= 1, so a very trivial example of a ring is R = {0};
for aesthetic reasons, we usually prefer the notation R = 0.

Exercise 4.2. Show that (much to our relief) R = 0 is the only ring
with 0 = 1.

Example 4.2. For any k ∈ Z, we can form the ring

Z[
√
k] := {a+ b

√
k : a, b ∈ Z}.

We add and multiply elements of this ring as real numbers (if k ≥ 0) or

as complex numbers (if k < 0; in this case, we interpret
√
k = i

√
−k).

The ring Z[
√
−1] is called the ring of Gaussian integers. Its members

are the complex numbers a+ ib, a, b ∈ Z.

Example 4.3. All examples so far are commutative rings in the sense
that ab = ba (addition is, of course, always commutative in a ring,
so it is not necessary to draw special attention to this). For a non-
commutative example, let R be any ring, and consider Mn(R), the
n × n matrices with entries in R. This is a ring with the operations
that suggest themselves: entrywise addition and matrix multiplication
(“row times column”).
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Exercise 4.3. Check this please. What are the additive and multiplica-
tive identities of Mn(R)? Then show that Mn(R) is not commutative
if n ≥ 2 and R 6= 0 (even if the original ring R was).

We are often interested only in special types of rings, with extra
properties. I already mentioned commutative rings. In any ring R, we
have that 0a = (0 + 0)a = 0a + 0a, so by subtracting 0a from both
sides we see that 0a = 0. Similarly, a0 = 0. So far, so good; however,
in a general ring, there could be a, b 6= 0 with ab = 0. This will not
happen if a (or b) is invertible in the multiplicative monoid (R, ·, 1): in
that case, ab = 0 implies that b = a−1ab = a−10 = 0.

We call the invertible elements of (the multiplicative monoid of) R
units, and we denote the collection of units by U(R). Then (U(R), ·)
is a group, as we saw in Chapter 2 (but show it again perhaps). Also,
we just showed that 0 /∈ U(R) if 0 6= 1. These considerations motivate
the following new definitions:

Definition 4.2. A domain is a ring R 6= 0 with the property that
ab = 0 implies that a = 0 or b = 0.

We call R a division ring or skewfield if R× = R \ 0 is a subgroup of
(R, ·). A field is a commutative division ring.

In other words, R is a division ring if 1 6= 0 and U(R) = R×. We
established above that every division ring is a domain, but the converse
need not hold. Let’s just go through our list of examples one more time:
Q,R,C are (very familiar) fields. Z is clearly not a field: for example
2 ∈ Z does not have a multiplicative inverse. However, Z is a domain.

Next, let’s take another look at R = Zk. If k is composite, say
k = jm with 2 ≤ j,m < k, then Zk is not a domain because jm ≡ 0
mod k, so jm = 0 in Zk. On the other hand, if k = p is a prime, then
Zp is a field. This follows from Proposition 1.9, which says (in our new
terminology) that every a ∈ Zp, a 6= 0, has a multiplicative inverse.

Exercise 4.4. Classify the rings Z[
√
k] and M2(R) in the same way.

Exercise 4.5. Find U(R) for R = Z and R = Z[
√
−1]. Then show that

m ∈ U(Zk) precisely if (m, k) = 1.

Proposition 4.3. Let R 6= 0 be a ring. Then R is a domain if and
only if R has the cancellation property: ab = ac, a 6= 0 implies that
b = c. In this case, ba = ca, a 6= 0, also implies that b = c.

Exercise 4.6. Prove Proposition 4.3.

Exercise 4.7. Show that every finite domain is a division ring. (In fact,
it is a field, but this is harder to prove.)
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If n ∈ Z and a ∈ R is an element of a ring, we can define na ∈ R
in a natural way: if n ≥ 1, then na := a + a + . . . + a is the n-fold
sum of a with itself. We also set 0a := 0 and na = −(|n|a) for n < 0.
(This is an exact analog of the exponential notation an in groups that
we introduced earlier, it just looks different typographically because we
are now using additive notation for the group operation.)

Similarly, we write an for the product of n factors of a, and we set
a0 := 1. Here, we assume that n ≥ 0; if n < 0, then it would be natural
to define an := (a−1)|n|, but this we can only do if a is a unit.

Proposition 4.4 (The binomial formula). Let R be a commutative
ring. Then, for a, b ∈ R, n ≥ 0,

(a+ b)n =
n∑
k=0

(
n

k

)
akbn−k.

This is proved in the same way as for numbers (by a combinatorial
argument or by induction).

Exercise 4.8. Show that the binomial formula (for n = 2, say) can fail
in a non-commutative ring.

Example 4.4. We still haven’t seen an example of a non-commutative
division ring. A very interesting example is provided by the quater-
nions. We will introduce these as a subring of M2(C). In general,
given a ring R, a subring S is defined as a subset S ⊆ R with 1 ∈ S,
and whenever a, b ∈ S, then also a − b, ab ∈ S; equivalently, S is
a subring precisely if S is an additive subgroup and a multiplicative
submonoid of R.

Exercise 4.9. A submonoid N of a monoid M is defined as a subset
N ⊆M with: (a) 1 ∈ N ; (b) if a, b ∈ N , then also ab ∈ N . This is not
(exactly) the same as asking that N satisfies (b) and is a monoid itself
with the multiplication inherited from M . Please explain.

We denote the quaternion ring by H, in honor of William Rowan
Hamilton (1805–1865), the discoverer of the quaternions. Hamilton
observed that the field C can be viewed as the vector space R2, endowed
with a multiplication that is compatible with the vector space structure.

In modern terminology, such a structure (a ring A that is also a
vector space over a field F , and c(xy) = (cx)y = x(cy) for all c ∈ F ,
x, y ∈ A) is called an algebra. The multiplicative structure of an algebra
is determined as soon as we know what the products ejek of basis
vectors are equal to because then general products

∑
cjej

∑
djej can

be evaluated by multiplying out in the expected way.
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So R2 has at most one algebra structure with e1e1 = e1, e1e2 =
e2e1 = e2, e2e2 = −e1, and if you change names to e1 → 1, e2 → i, you
see that there indeed is one, and it is isomorphic to C, as algebras. (It is
also not hard to show that C is the only field that is a two-dimensional
R-algebra, up to isomorphism, so this closes the case n = 2.)

Hamilton now tried to find other R-algebras that are fields (though
of course this terminology didn’t exist at the time). In more concrete
terms, this assignment reads: fix n ≥ 3, and then try to come up with
values of the products ejek, 1 ≤ j, k ≤ n, where ej are the standard
basis vectors of Rn, that make Rn a field. Some ten years later, all
Hamilton had to show for his efforts was what seems to be a very
partial success: for n = 4, there is a division ring (but not a field),
namely H.

It turns out that there are reasons for this failure. More precisely,
one can show that: (1) Rn can not be made a field in this way for any
n > 2; (2) if we are satisfied with division rings rather than fields, then
the quaternions H are an example, and here n = 4, but no other value
n > 2 works.

It is in fact very easy to see, definitely with modern tools, that there
are no fields that are finite-dimensional R-algebras other than R itself
and C and that n = 3 is completely hopeless, even if one is satisfied
with division rings rather than fields. We’ll discuss this in the next
chapter. Hamilton’s quest looks rather quixotic from a modern point
of view.

We don’t follow the historical development here; we now introduce
H as the subring of M2(C) with these elements:(

w z
−z w

)
, w, z ∈ C

The bar denotes complex conjugation: x+ iy = x− iy, x, y ∈ R
Exercise 4.10. Show that H ⊆ M2(C) is a subring. Then show that H
is not commutative.

To show that H is a division ring, we must show that every x ∈ H,
x 6= 0, has an inverse. The condition that x 6= 0 means that w, z are not
both zero. This means that detx = |w|2 + |z|2 6= 0, so x is definitely an
invertible matrix, but of course that isn’t quite good enough because
it only says that x had an inverse in M2(C). We must really make sure
that this inverse is in H, but that’s very easy too because we can just
explicitly compute(

w z
−z w

)−1
=

1

|w|2 + |z|2

(
w −z
z w

)
=

(
u v
−v u

)
,
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with u = w/(|w|2 + |z|2), v = −z/(|w|2 + |z|2), so we do have that
x−1 ∈ H, as required.

Exercise 4.11. The discussion above suggests that H is a four-dimen-
sional algebra over R. Please make this explicit.

Much of the basic material on groups just carries over to rings (or
other algebraic structures) in a very straightforward way. We already
defined subrings. If R,R′ are rings, then a map ϕ : R → R′ is called
a homomorphism if ϕ(a+ b) = ϕ(a) + ϕ(b), ϕ(ab) = ϕ(a)ϕ(b), ϕ(1) =
1′. Equivalently, we ask that ϕ is a homomorphism for the additive
groups and the multiplicative monoids. An isomorphism is a bijective
homomorphism; as before, we write R ∼= R′ to express the fact that
R,R′ are isomorphic rings.

As an application of these notions, let us find the smallest subring
P of a given ring R. We call P the prime ring. We must in fact also
show that such an object (the smallest subring) exists.

Clearly, we must have 0, 1 ∈ P , and just to obtain an additive sub-
group, we must then put n1 into P for all n ∈ Z. This, however, will do:
P = {n1 : n ∈ Z} is a subring of R. Indeed, P is closed under addition
and additive inverses by construction, and (m1)(n1) = (mn)1 ∈ P , so
P is also closed under multiplication.

Exercise 4.12. The identity (m1)(n1) = (mn)1 that I just used looks
ridiculously obvious, but perhaps there is slightly more to it than meets
the eye. Can you please explain how I really obtained it?

By construction, the prime ring P has the property that if Q ⊆ R is
any subring, then P ⊆ Q.

The elements n1, n ∈ Z, of P are either all distinct, or there exist
m,n ∈ Z, m 6= n such that m1 = n1. In the second case, we can then
also find an n ≥ 1 with n1 = 0 (why?). The smallest such n is called
the characteristic of R. If there is no n 6= 0 with n1 = 0, then we say
that R has characteristic 0.

Exercise 4.13. Show that P ∼= Z if char(R) = 0 and P ∼= Zn if
char(R) = n ≥ 1. Suggestion: Proceed as in our (first) discussion
of cyclic groups.

Exercise 4.14. Show that if R is a domain, then the characteristic can
only be zero or a prime.

Exercise 4.15. Show that it is not possible to define a multiplication
on the abelian group A = Q/Z that makes A a ring.

Exercise 4.16. Let R be a commutative ring of prime characteristic
p ≥ 2. Show that (a+ b)p = ap + bp for arbitrary a, b ∈ R.
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Let’s move on to the next items on our list (basic group theory mate-
rial, adapted to rings). We define a congruence on R as an equivalence
relation ≡ that is compatible with the ring structure in the sense that
if a ≡ a′, b ≡ b′, then a + b ≡ a′ + b′, ab ≡ a′b′. A congruence on a
ring must in particular be a congruence (in the group theory sense of
the word) of its additive group. This already shows us that congru-
ences come from normal subgroups of (R,+), but not necessarily all of
these since a congruence on a ring has additional properties. We also
observe that in fact all subgroups of (R,+) are normal because this is
an abelian group.

Let’s work this out in more detail. Suppose ≡ is a congruence on R.
Let I ⊆ R be the corresponding subgroup of (R,+). More precisely,
we know from Theorem 2.22(a) that I = 0, the equivalence class of
0 ∈ R. We also know that a ≡ b precisely if a − b ∈ I. Now if r ∈ R,
a ∈ I, then, since r ≡ r, a ≡ 0, we must have that ra ≡ r0 = 0 and
ar ≡ 0, or, equivalently, ra, ar ∈ I. This motivates:

Definition 4.5. A non-empty subset I ⊆ R is called a (two-sided)
ideal if whenever a, b ∈ I, r ∈ R, then a− b, ar, ra ∈ I.

A one-sided left ideal would be defined by the condition that a −
b, ra ∈ I in the above situation, and of course right ideals can be
defined similarly. For commutative rings the distinction disappears,
and this is the case we will be most interested in. In the sequel, ideal
will mean two-sided ideal.

We now have the following analog of Theorem 2.22 for rings.

Theorem 4.6. (a) Let ≡ be a congruence on a ring R. Then I = 0 is
an ideal, and a ≡ b precisely if a− b ∈ I.
(b) Let I ⊆ R be an ideal. Then a ≡ b precisely if a − b ∈ I defines a
congruence on R, and I = 0, the equivalence class of 0 with respect to
this congruence.

Proof. We just proved part (a). Suppose now, conversely, that we are
given an ideal I. Then I is in particular a (normal) subgroup of (R,+),
so we know already that a ≡ b defined by the condition that a−b ∈ I is
an equivalence relation and a congruence of the additive group; also, the
final claim, that I = 0, is clear from this, by taking b = 0. It remains
to show that if a ≡ a′, b ≡ b′, then also ab ≡ a′b′. By assumption,
a′ = a+x, b′ = b+y, with x, y ∈ I, so a′b′ = ab+x(b+y)+ay = ab+z
with z ∈ I, as required. �

As in the case of groups, given an ideal I, we can form the quotient
ring R = R/I. Its elements are the cosets a = a + I, a ∈ R, and
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the ring operations are performed on the representatives a. With these
operations, R/I is indeed a ring: the algebraic laws from R just carry
over automatically to R/I because the operations are performed on
representatives. For example,

a(b+ c) = a(b+ c) = a(b+ c) = ab+ ac = ab+ ac = a b+ a c.

The natural map q : R→ R/I, q(a) = a+ I, is a surjective homomor-
phism.

Exercise 4.17. Show this please.

Exercise 4.18. Define addition and multiplication on subsets of a ring
R as A + B = {a + b : a ∈ A, b ∈ B}, AB = {ab : a ∈ A, b ∈ B}, as
expected. Show that if we multiply two cosets (a+ I)(b+ I) as sets in
this way, we are not guaranteed to obtain ab+ I, the product of these
factors taken in the quotient ring R/I. Also, show that the distributive
laws fail for subsets. (So this interpretation is best abandoned here.)

Theorem 4.7. Let ϕ : R → R′ be a homomorphism. Then I =
ker(ϕ) := {a ∈ R : ϕ(a) = 0′} is an ideal. Moreover, ϕ factors through
R/I:

R

q

��

ϕ
// R′

R/I
ϕ

==
.

The unique induced map ϕ is an injective homomorphism, and ϕ(R) ∼=
R/I.

Proof. We already know that I = ker(ϕ) is a subgroup of (R,+), so
to establish that I is an ideal, we need only show that rk, kr ∈ I for
k ∈ I, r ∈ R. This is clear because ϕ(rk) = ϕ(r)ϕ(k) = ϕ(r)0 = 0,
and similarly for kr.

The rest of the argument is exactly the same as in the group case.
We are forced to set ϕ(a + I) = ϕ(a); this gives a well defined map
because ϕ produces the same output on every a′ ∈ a + I. It’s easy to
see that ϕ is a homomorphism: for example, we have that

ϕ((a+ I) + (b+ I)) = ϕ(a+ b+ I) = ϕ(a+ b) =

ϕ(a) + ϕ(b) = ϕ(a+ I) + ϕ(b+ I).

Finally, ϕ is injective by construction: the collection of those elements
ofR that get sent to the same image by ϕ becomes one point ofR/I. �
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Exercise 4.19. Give a somewhat more explicit version of this last part of
the argument. Also, show that a homomorphism ϕ is injective precisely
if ker(ϕ) = 0.

Let R be a ring, and fix a subset S ⊆ R. We denote by I = (S)
the ideal generated by S; this is defined as the smallest ideal I with
I ⊇ S. First of all, we need to make sure that there always is such
an object. As in the group case, this follows from the representation
I =

⋂
J , where the intersection is taken over all ideals J ⊇ S.

Exercise 4.20. Show that an intersection of ideals is an ideal itself.
Then conclude that

⋂
J is an ideal with the required properties.

We can again ask ourselves if it is also possible to build I = (S) from
the bottom up, by gingerly putting elements into it, but only those that
we are sure must be in this ideal. Since (S) is supposed to be an ideal,
we must have asb ∈ I for s ∈ S and arbitrary a, b ∈ R. An ideal is an
additive subgroup, so we must also put sums (and differences) of such
terms into (S). Fortunately, the process stabilizes here:

Proposition 4.8. Let S ⊆ R. Then the ideal generated by S can be
described as follows:

(4.1) (S) =

{
n∑
j=1

ajsjbj : n ≥ 0, sj ∈ S, aj, bj ∈ R

}
If R is commutative, then this simplifies to (S) = {

∑
ajsj}; in partic-

ular, (x) = {ax : a ∈ R}.

Exercise 4.21. Prove Proposition 4.8. Suggestion: Model your argu-
ment on the proof of Proposition 2.9.

Note that in the non-commutative case, we may have to repeat gen-
erators in (4.1). For example, axb + cxd need not equal a single term
of the form exf ; in the commutative case, such repetitions become
unnecessary because the expression simplifies to ex, e = ab+ cd.

Theorem 4.9. Let R 6= 0 be a commutative ring. Then R is a field
precisely if R has no ideals I 6= 0, R.

Proof. Suppose that R is a field. If I is an ideal and x ∈ I, x 6= 0, then
for any a ∈ R, we have that a = (ax−1)x ∈ I. So I = R if I 6= 0.

Conversely, suppose that R has this property, and let x ∈ R be
any non-zero element. Then (x) = R by assumption, so in particular,
1 ∈ (x), and now Proposition 4.8 shows that there exists a ∈ R with
ax = 1. This says that x is invertible. �
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Exercise 4.22. Formulate and prove an analog of Theorem 4.9 for non-
commutative rings (“R 6= 0 is a division ring if and only if ...”).

Exercise 4.23. Show that R = M2(R) has no ideals 6= 0, R (or you can
do it for Mn(R) if feeling more ambitious). Now M2(R) is certainly not
a division ring (why not?). Are there any contradictions to what you
showed in the previous Exercise?

What are the ideals of R = Z? We already know that the subgroups
of (Z,+) are kZ = {kn : n ∈ Z}. It is now clear that all of these
are ideals also because if a ∈ kZ, say a = kn, and x ∈ Z, then ax =
k(nx) ∈ kZ, as required. All these ideals are generated (already as
subgroups) by a single element k.

Definition 4.10. A principal ideal is an ideal that is generated by a
single element. A ring R is called a principal ideal domain (PID) if R
is a commutative domain and every ideal I ⊆ R is a principal ideal.

Exercise 4.24. Show that I = 0, R are principal ideals for any ring R.

What we have just shown about Z can now be summarized as follows:

Theorem 4.11. Z is a PID. Its ideals are (k) = {kn : n ∈ Z},
k = 0, 1, 2, . . ..

What are the congruences that correspond to these ideals, via Theo-
rem 4.6? Fix k ≥ 0 and consider I = (k). By part (b) of the Theorem,
a ≡ b if and only if a − b ∈ (k), which happens if and only a − b is
a multiple of k. In other words, we recover congruence modulo k, as
introduced in Section 1.2. We also obtain the satisfying conclusion that
these are in fact the only (ring) congruences on Z.

Exercise 4.25. Show that every field is a PID.

Here’s the ring version of the first isomorphism theorem:

Theorem 4.12. Let I be an ideal in a ring R. Then the ideals (sub-
rings) J ⊇ I of R are in one-to-one correspondence to the ideals (sub-
rings) of R = R/I, via J 7→ J = J/I = {x+I : x ∈ J}. Moreover, if J
is such an ideal, then R/J ∼= R/J . An isomorphism ϕ can be obtained
from the diagram

R //

��

R/I = R

��zz

R/J R/J
ϕ

oo

;

here, we use the natural quotient maps along the solid arrows.
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Exercise 4.26. Prove this. Follow the same strategy as in our proof of
Theorem 3.4.

As an application, let’s take one more look at the rings Zk. We know
that we can interpret Zk ∼= Z/(k). Theorem 4.12 now says that the
ideals of Z/(k) exactly correspond to the ideals I ⊆ Z with I ⊇ (k).
Since Z is a PID, we also know that any such I is of the form I = (n),
for some n ≥ 0. Now (m) = {mx : x ∈ Z}, so (n) ⊇ (k) precisely if n|k.
So the ideals of Z/(k) correspond to the divisors of k. In particular,
R = Z/(k) has no ideals 6= 0, R if and only if k is a prime. We recover
what we found earlier by less abstract arguments: Zk ∼= Z/(k) is a field
precisely if k is a prime.

4.2. The field of fractions. Recall that we can construct (the field)
Q from (the ring) Z by forming fractions q = a/b, a, b ∈ Z, b 6= 0.
Fractions of this type need not be reduced, so here we must be prepared
to identify a/b with a′/b′ when ab′ = a′b. The algebraic operations on
these fractions are then defined in the expected way, and the whole
procedure delivers a field. This construction works the same way in an
abstract setting.

For the remainder of this chapter, we will be interested in commu-
tative rings almost exclusively, so it will be convenient to adopt the
following

Convention: From now on, ring (domain) will mean
commutative ring (domain).

Let R be a domain. I want to build what we will call the field of
fractions F (R); so F0 = {a/b : a, b ∈ R, b 6= 0} looks like a good
starting point. Of course, division is not defined in a ring, so a/b doesn’t
make sense as “a divided by b.” I really view a/b as a convenient
notation for the pair (a, b). Still taking the transition from Z to Q
as our guide, we will want to identify two formal fractions a/b, a′/b′

if ab′ = a′b. In anticipation of this, we introduce the relation ∼ by
declaring a/b ∼ a′/b′ if ab′ = a′b.

Exercise 4.27. Show that ∼ is an equivalence relation on F0.

By the Exercise, we can form the quotient space F (R) = F0/ ∼. Its
elements are equivalence classes of formal fractions a/b. We can now
make F (R) a field by introducing the operations in the expected way:
we put

(4.2) a/b+ c/d := (ad+ bc)/bd, (a/b)(c/d) := (ac)/(bd);

as usual, we do not distinguish between equivalence classes and repre-
sentatives in the notation. Before we proceed, we must check that +, ·
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are indeed well defined: we must make sure that the right-hand sides
of (4.2) are independent of the choice of representatives. Let me do
this for the product. So suppose that a/b ∼ a′/b′, c/d ∼ c′/d′. This
means that ab′ = a′b, cd′ = c′d. It follows that acb′d′ = a′c′bd, but this
says that (ac)/(bd) ∼ (a′c′)/(b′d′), as required.

Exercise 4.28. Establish the analogous property for +.

Now a tedious but entirely straightforward direct verification shows
that (F (R),+, ·) is a ring, with neutral elements 0 = 0/1, 1 = 1/1.

Theorem 4.13. F (R) is a field. Moreover, ι : R→ F (R), ι(a) = a/1,
defines an injective homomorphism.

The last statement is usually expressed by saying that R is embedded
in F (R); we really mean by this that F (R) contains a ring that is
isomorphic to R as a subring. Indeed, ι, thought of as a map ι : R →
ι(R) ⊆ F (R), is an isomorphism, so F (R) contains an isomorphic copy
ι(R) of R as a subring, as claimed.

Proof. We already saw that F (R) is a ring. To show that F (R) is a
field, let a/b ∈ F (R), a/b 6= 0. This last condition really means that
a/b 6∼ 0/1, or, equivalently, a 6= 0. Thus b/a ∈ F (R), and clearly
(a/b)(b/a) = ab/ab ∼ 1/1 = 1, so a/b is invertible.

Exercise 4.29. Verify that ι(a) = a/1 is an injective homomorphism.

�

Exercise 4.30. Let R be a field. Show that then ι(R) = F (R); so, in
particular, F (R) ∼= R.

Exercise 4.31. Show that a/b = (a/1)(b/1)−1. Or, since a/1 ∈ F (R)
is the element that corresponds to a ∈ R under the embedding ι, we
could write somewhat imprecisely but more intuitively a/b = ab−1. So,
as expected, the formal fraction a/b can be thought of as a multiplied
by the inverse of b.

F (R) is not just an arbitrary field that contains (an isomorphic copy
of) R. Rather, the construction looks minimal in the following sense:
suppose I want a field that contains R (really an isomorphic copy of R,
but I’m going to ignore this distinction now). This field then definitely
has to contain a multiplicative inverse b−1 of each b ∈ R \0, but since I
can multiply in a field, I then obtain all products ab−1, a, b ∈ R, b 6= 0.
As you showed in the previous Exercise, these (formal, since b−1 need
not be in R) products can be naturally identified with the elements of
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F (R). So in this sense, I will not be able to embed R into a smaller
field.

These considerations were somewhat informal and vague. The as-
serted minimality of F (R) finds its rigorous expression in a mapping
property.

Theorem 4.14. Let R be a domain and F a field. Then every injective
homomorphism ϕ : R → F factors through F (R): there is a unique
homomorphism ψ such that the following diagram commutes:

R

ι
��

ϕ
// F

F (R)
ψ

<<

Proof. Just to make the diagram commute, we must set ψ(a/1) = ϕ(a)
for a ∈ R. By Exercise 4.31, if we want ψ to be a homomorphism, we
are then forced to define

(4.3) ψ(a/b) = ϕ(a)ϕ(b)−1.

Exercise 4.32. Confirm that this definition makes sense. Address the
following points: (a) Show that ϕ(b) is invertible if b 6= 0; (b) verify
that (4.3) defines ψ(x) for x ∈ F (R) unambiguously (what exactly do
you need to show here?).

Now that you have made sure that (4.3) does give us a map ψ, it
remains to check that this ψ works. Clearly, the diagram commutes,
so we must check that ψ is a homomorphism. I’ll only verify that ψ is
multiplicative:

ψ((a/b)(c/d)) = ψ((ac)/(bd)) = ϕ(ac)ϕ(bd)−1

= ϕ(a)ϕ(c)ϕ(b)−1ϕ(d)−1 = ψ(a/b)ψ(c/d),

as required. �

Exercise 4.33. Prove similarly that ψ(x + y) = ψ(x) + ψ(y) for x, y ∈
F (R) and that ψ(1) = 1.

Exercise 4.34. Let ϕ : F → R be a homomorphism from a field F to a
ring R 6= 0. Show that ϕ is injective.

Theorem 4.14 does express the minimality of F (R): if we consider
any embedding ϕ : R → F of R in a field, then the Theorem delivers
an injective map ψ from F (R) onto a subfield of F , and this map sends
the copy ι(R) of R inside F (R) to its copy ϕ(R) in F (why?). So
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after identifying isomorphic rings/fields, the situation that emerges is
“R ⊆ F (R) ⊆ F .”

There is no analog of the field of fractions construction for non-
commutative rings. The following exercises explore this theme in more
detail.

Exercise 4.35. Let M be a commutative monoid with the cancellation
property: if ab = ac, then b = c (recall that the multiplicative monoid
(R\0, ·) of a domain has this property). Show that M can be embedded
in an abelian group G. Comments: (1) So you want to construct a
group G and an injective (monoid) homomorphism ϕ : M → G; (2)
to actually do this problem, just run a version of the field of fractions
construction (this is easier than what we did above).

Exercise 4.36. Consider the free monoid FM(a1, . . . , b4) on the eight
generators aj, bj, 1 ≤ j ≤ 4, and then the relations

(4.4) a1a2 = a3a4, a1b2 = a3b4, b1a2 = b3a4.

For x, y ∈ FM , say that x ≡ y precisely if there is a finite sequence of
substitutions using (4.4) that gets you from x to y.

Show that ≡ is a congruence on FM .

Exercise 4.37. Let M = (FM/ ≡) be the (non-commutative) quotient
monoid considered in the previous Exercise. Show that M has the
cancellation property: xy = xz or yx = zx implies that y = z.

Exercise 4.38. Show that M = (FM/ ≡) can not be embedded in a
group G. Hint: Show that if G is a group containing eight elements
aj, bj that satisfy (4.4), then b1b2 = b3b4. Then show that this last
relation does not hold in M .

It is then possible to build a (non-commutative) domain D from this
M that can not be embedded in a division ring, but maybe we stop
here.

4.3. Polynomial rings. Let R be a subring of R′. Then, for any
subset S ⊆ R′, we define R[S] as the subring of R′ that is generated by
R and S. Equivalently, this is the smallest subring of R′ that contains
R∪S. We can establish the existence of this object in the usual way, by
taking the intersection of all subrings of R′ that contain R ∪ S. If S =
{s1, . . . , sn}, we usually write R[s1, . . . , sn] instead of R[{s1, . . . , sn}].

Exercise 4.39. Show that R[S ∪ T ] = (R[S])[T ].

As usual, we can also build R[S] from the bottom up. Let’s look at
this in the case R[u], where we adjoin just one element u ∈ R′. Since
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u ∈ R[u] and addition and multiplication will not take us outside R[u],
all polynomials in u with coefficients from R

a0 + a1u+ a2u
2 + . . .+ anu

n, n ≥ 0, aj ∈ R,

must be in R[u]. Since these form a subring that contains R and u,
they are exactly all of R[u]:

(4.5) R[u] =
{
a0 + a1u+ a2u

2 + . . .+ anu
n : n ≥ 0, aj ∈ R

}
Exercise 4.40. Prove (4.5) more explicitly please.

Now if we take two distinct polynomials (that is, two sets of co-
efficients from R that are not identical), then there is of course no
guarantee that the corresponding elements of R[u] will also be distinct.
For example, if R = Z, R′ = Q, u = 1/2, then 2u = 1, even though 2x
and 1 are distinct as polynomials.

Given R and a formal symbol x, I now want to build a new ring R[x]
that has no such relations between distinct polynomials in x. This is
similar in spirit to (but easier than) the construction of the free group.
R[x] will just consist of all polynomials in x with coefficients from R,
and I add and multiply these in the obvious way. Two polynomials
will be declared distinct unless they have exactly the same sequence of
coefficients.

Now if I right away wrote a typical element of R[x] as f(x) = a0 +
a1x+ . . .+ anx

n (we will do this very soon), you could complain that
these operations +, · are undefined. Recall that x /∈ R is just a formal
symbol, I am not operating inside a bigger ring R′ now.

So, to obtain a clean formal definition of the polynomial ring, we
tentatively set

R[x] = {(a0, a1, a2, . . .) : aj ∈ R, aj = 0 for j > n for some n ≥ 0};

of course, our intention is to identify such a sequence with the polyno-
mial with these coefficients as soon as possible. We then define addition
and multiplication on R[x] as follows:

(a0, a1, . . .) + (b0, b1, . . .) = (a0 + b0, a1 + b1, . . .),

(a0, a1, . . .)(b0, b1, . . .) = (a0b0, a0b1 + a1b0, a0b2 + a1b1 + a2b0, . . .).

These definitions are of course motivated by the fact that they give you
what you would have obtained if you had added or multiplied (formal)
polynomials. It is now straightforward, but mildly tedious to check
that R[x] with these operations becomes a ring with neutral elements
(0), (1); here, we agree that coefficients beyond those that are listed
are equal to zero.
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Exercise 4.41. Show that with these definitions, R[x] becomes a ring.

From a purely formal point of view, R[x] is not directly related to
R; the only connection so far is that R was one of the ingredients in
its construction. However, the map R→ R[x], a 7→ (a), is an injective
homomorphism, so an isomorphic copy of R is embedded in R[x]. We
usually identify R with this subring of R[x]. Next, we introduce x :=
(0, 1); this is of course motivated by the fact that x as a polynomial has
these coefficients x = 0 + 1 · x. Then x2 = xx = (0, 1)(0, 1) = (0, 0, 1),
x3 = (0, 0, 0, 1), and, more generally, xn = (0, . . . , 0, 1), where the 1 is
in the (n+1)st slot (which corresponds to index n). Also, observe that
if a ∈ R, then axn = (a)(0, 0, . . . , 0, 1) = (0, 0, . . . , 0, a). By combining
these facts, we obtain the formula

(a0, a1, . . . , an) = a0 + a1x+ a2x
2 + . . . anx

n.

Everything makes perfect sense now; the algebraic operations are per-
formed in the ring R[x]. We note with some relief that the ring R[x]
can (and will) be thought of as the ring of formal polynomials in the
new symbol x, with coefficients from R. The qualification “formal” is
crucial here: you can also build a ring P of polynomial functions: its
elements are the functions f : R→ R of the form

f(x) = a0 + a1x+ . . .+ anx
n, n ≥ 0, aj ∈ R.

Functions with values in a ring can be added and multiplied pointwise,
for example (f + g)(x) := f(x) + g(x). It’s now easy to check that P
becomes a ring with these operations. Now every formal polynomial
f ∈ R[x] induces a function f(x) ∈ P , given by the same expression;
more formally, we can say that f 7→ f(x) defines a homomorphism
R[x] → P . This homomorphism is not, in general, injective, and P
need not be isomorphic toR[x]. This happens for the simple reason that
non-identical polynomials can define the same function. For example,
if R = Z2, then f(x) = 0 and g(x) = x2 + x are the same function
Z2 → Z2 (why?), but of course f, g are distinct as elements of Z2[x].

Exercise 4.42. (a) Show that R[x] is an infinite ring if R 6= 0.
(b) Show that the ring of polynomial functions R→ R is finite if R is
finite.
(c) Show that the ring of polynomial functions p : R→ R agrees with
R[x] for R = Z, Q or R.

Exercise 4.43. Here’s an abstract version of the construction we just
ran, if you like such things. Let M be a commutative monoid, R a
ring. Define R[M ] as the collection of functions f : M → R with
f(m) 6= 0 for only finitely many m ∈ M . It is much more suggestive
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to represent these as formal linear combinations
∑
amm, with m ∈M ,

am = f(m) ∈ R, and the (formal) sum contains finitely many terms.
Then introduce addition and multiplication on R[M ] as follows:∑

amm+
∑

bmm :=
∑

(am+bm)m,
∑

amm
∑

bmm :=
∑

cmm,

and here cm =
∑

pq=m apbq; this sum is an actual, not formal, sum in
R. In other words, just add and multiply formal sums formally.

Show that R[M ] is a ring, and that R[N0] ∼= R[x]. (If you take
M = N0 × . . . × N0, then you obtain the polynomial ring over R in
several variables.)

Exercise 4.44. Show that R[x] is generated by R and x (so the notation
is consistent with our earlier use of R[u]).

The quick summary of the construction of R[x] is: a ring generated
by R and x that does not have unnecessary relations. This should give
a universal mapping property into arbitrary rings generated by R and
one element. Here’s a slightly more general version of this:

Theorem 4.15. Let ψ : R → S be a homomorphism between rings,
and let u ∈ S. Then there exists a unique homomorphism ϕ : R[x]→ S
with ϕ(a) = ψ(a) for a ∈ R and ϕ(x) = u.

Proof. If there is such a homomorphism ϕ, then it must map

a0 + a1x+ . . .+ anx
n 7→ ψ(a0) + ψ(a1)u+ . . .+ ψ(an)un.

Conversely, it’s straightforward to check that this works. �

In particular, R ⊆ S could be a subring of S, and ψ(a) = a, a ∈ R.
This is perhaps the situation we will encounter most frequently when
applying Theorem 4.15.

In this case, the homomorphism ϕ is really just a fancy way of saying:
plug u into f(x) ∈ R[x]. Or we could say that ϕ(f) evaluates f at u.
We do want to remember, though, that f ∈ R[x] is a formal polynomial,
not a function.

Corollary 4.16. Let R be a subring of S and u ∈ S. Then there is an
ideal I ⊆ R[x], I ∩R = 0, so that R[u] ∼= R[x]/I.

This can be viewed as the ring analog of Corollary 3.12.

Proof. The evaluation homomorphism ϕ : R[x]→ R[u], a 7→ a, a ∈ R,
x 7→ u, is surjective by (4.5), so Theorem 4.7 shows that R[u] ∼= R[x]/I,
with I = ker(ϕ). Since ϕ(a) = a for a ∈ R, it then also follows that
I ∩R = 0. �
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4.4. Properties of polynomial rings. Let f = a0+a1x+. . .+anx
n ∈

R[x], an 6= 0. Then we call n = deg f the degree of f . It will also be
convenient to put deg 0 = −∞. If a ∈ R \ 0 and we think of a as an
element of R[x], then of course deg a = 0.

Theorem 4.17. Let R be a domain. Then R[x] is a domain, and
U(R[x]) = U(R).

Proof. Suppose that fg = 0. If neither of these is the zero polynomial,
then m = deg f ≥ 0, n = deg g ≥ 0, and thus the highest coefficients
am, bn are both 6= 0. But then fg = . . . + ambnx

m+n 6= 0. So f = 0 or
g = 0, and this says that R[x] is a domain.

If deg f ≥ 1, then we see by again focusing on the highest power of x
that fg 6= 1 for arbitrary g ∈ R[x]. This also says that if f ∈ R, then
the inverse in R[x], if it exists, can only be an element of R. However,
if f ∈ U(R), then of course the same inverse as before works. �

Let f, g ∈ R[x], g 6= 0. Then we can divide f by g with remainder, in
the following sense: if deg g = n and we denote the leading coefficient
of g by bn, then there exist h, r ∈ R[x] and k ≥ 0 with deg r < n and

(4.6) bknf(x) = g(x)h(x) + r(x).

We can do this by running the familiar long division style procedure.
Let’s prove the existence of k, h, r as in (4.6) along these lines. We
organize the argument as an induction on m = deg f .

Exercise 4.45. Convince yourself that k, h, r as in (4.6) can be found if
m = 0.

The polynomial f is of the form f(x) = amx
m + lower order terms,

am 6= 0. First of all, if n = deg g > m, then we can just take k = 0,
h = 0, r = f . If n ≤ m, let

(4.7) f1(x) = bnf(x)− amxm−ng(x) ∈ R[x].

Then deg f1 < m, so bjmf1(x) = k(x)g(x) + r(x) by the induction
hypothesis for suitable j ≥ 0, k, r ∈ R[x], deg r < n. Plug this into
(4.7) to obtain that

bj+1
n f(x) = g(x)(k(x) + amb

j
nx

m−n) + r(x),

and this is (4.6).
If bn is invertible, then we can multiply (4.6) by b−kn and we obtain

the slightly simpler version

f(x) = g(x)h(x) + r(x), deg r < deg g.

In particular, this will always work if R is a field.
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Theorem 4.18. Given f ∈ R[x], a ∈ R, there exists a unique polyno-
mial h ∈ R[x] such that

(4.8) f(x) = (x− a)h(x) + f(a).

Here, the (suggestive) notation f(a) refers to ϕa(f), where ϕa :
R[x] → R is the evaluation homomorphism from Theorem 4.15 that
sends x 7→ a.

Proof. Divide f by g = x− a with remainder, as in (4.6). Notice that
b1 = 1. This gives that f(x) = (x−a)h(x)+r(x), with deg r < deg g =
1. In other words, r ∈ R. Now evaluate at x = a (more precisely, apply
ϕa to both sides) to see that r = f(a).

This also gives uniqueness because if h1, h2 both work in (4.8), then
(x− a)(h2−h1) = 0, but this shows that h2−h1 = 0 (if not, then look
at the highest coefficient of the product to obtain a contradiction). �

Exercise 4.46. Show that in Z6[x],

2x2 + 4x = 2x(x+ 2) = 2x(4x+ 5), but x+ 2 6= 4x+ 5,

and take another look at the last part of the proof of Theorem 4.18.

Corollary 4.19. Let f ∈ R[x], a ∈ R. If f(a) = 0, then (x− a)|f(x).

We define divisors and divisibility in a general ring R in the same
way as in Z (see Section 1.1 for this): a|b means that b = ac for some
c ∈ R.

Theorem 4.20. If F is a field, then F [x] is a PID.

This includes the claim that F [x] is a domain, which we established
earlier, in Theorem 4.17.

Proof. Although the setting looks quite different, this is essentially the
same proof as the one for Z. In both cases, division with remainder
is the key tool that makes things work. In fact, a completely general
version of this argument works; this is explored in Exercises 4.48, 4.49
below.

So let I ⊆ F [x] be an ideal. Clearly I = 0 = (0) is a principal ideal.
If I 6= 0, fix a g ∈ I, g 6= 0, such that deg g is minimal among all
such polynomials. Now if f is any element of I, divide f by g with
remainder: f = gh+ r, deg r < deg g. Then r ∈ I as well, so r = 0 by
the choice of g. We have shown that I ⊆ (g) = {gh : h ∈ R[x]}, and
the reverse inclusion is obvious, so I = (g). �

Exercise 4.47. Is Z[x] a PID?
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Exercise 4.48. A domain R is called a Euclidean domain if there exists
a function ν : R → N0 such that if a, b ∈ R, b 6= 0, then there exist
q, r ∈ R with a = qb + r, ν(r) < ν(b). (This is an abstract version
of division with remainder.) Show that Z and F [x], F a field, are
Euclidean domains. Suggestion: For F [x], try ν(f) = 2deg f , with
2−∞ := 0.

Exercise 4.49. Show that a Euclidean domain is a PID.

Exercise 4.50. Show that Z[
√
−1], the ring of Gaussian integers, is a

Euclidean domain.

Exercise 4.51. If R is not a domain, then it can of course happen that
fg = 0 for f, g ∈ R[x], f, g 6= 0. However, show that if such an
f ∈ R[x] is given, then already cf = 0 for some c ∈ R, c 6= 0. Hint:
Write f =

∑
ajx

j, and consider separately the case where ajg = 0
for all j. In the other case, try to replace g by another polynomial of
smaller degree.

Now suppose that F ⊆ R, where F is a field and R is a ring, and
F is a subring of R. Let u ∈ R, and consider the subring F [u] ⊆ R.
By Corollary 4.16, F [u] ∼= F [x]/I. More precisely, I = ker(ϕ), where
ϕ : F [x]→ F [u] sends a 7→ a, a ∈ F , and x 7→ u. In other words, g ∈ I
precisely if g(u) = 0.

By Theorem 4.20, I = (f) for suitable f(x) ∈ F [x]; in fact, from
the proof, we also know that if I 6= 0, then any non-zero polynomial
of minimal degree from I will work as f . In this case, deg f ≥ 1:
we cannot have f = a ∈ F× = F \ 0 because then f(u) 6= 0. Let’s
summarize: F [u] ∼= F [x]/(f), and here any f ∈ F [x] with f(u) = 0
and minimal degree works.

In the other case, I = 0, so R[x] ∼= R[u] and g(u) 6= 0 for all
polynomials g ∈ F [x], g 6= 0.

Exercise 4.52. Show that in the first case there is a unique monic f ∈
F [x] of smallest possible degree with f(u) = 0; we call a polynomial
monic if its leading coefficient equals 1.

We make a few definitions that are motivated by these considera-
tions.

Definition 4.21. Suppose that F ⊆ R, R is a ring and F is a field
(and also a subring of R). Then we say that u ∈ R is transcendental
over F if f(u) 6= 0 for all f ∈ F [x], f 6= 0. An algebraic element is
one that is not transcendental. If u ∈ R is algebraic, then there exists
a unique monic polynomial f ∈ F [x] of smallest possible degree with
f(u) = 0. We call f the minimal polynomial of u over F .
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We summarize what we found above:

Proposition 4.22. Suppose that F ⊆ R, F is a field and a subring
of the ring R. If u ∈ R is transcendental over F , then F [u] ∼= F [x].
If u ∈ R is algebraic over F with minimal polynomial f ∈ F [x], then
F [u] ∼= F [x]/(f).

Let’s now take another look at the second case.

Theorem 4.23. Let u ∈ R be algebraic over F , with minimal polyno-
mial f ∈ F [x]. If f is irreducible in the sense that if f = gh, then one
of the factors is in F×, then F [u] is a field. On the other hand, if f is
reducible, then F [u] is not a domain.

Proof. We know that F [u] ∼= F [x]/(f), and this will be a field precisely
if there are no ideals other than 0 and the whole ring; see Theorem
4.9. We also know, from Theorem 4.12, that the ideals of F [x]/(f)
correspond to those ideals I ⊆ F [x] with I ⊇ (f). What do such ideals
I look like? First of all, I = (g), since F [x] is a PID, and then we will
have that (g) ⊇ (f) precisely if f ∈ (g), and this happens if and only if
f = gh for some h ∈ F [x]. Now if f is irreducible, then this can only
work if g ∈ F× or h ∈ F×, but then (g) = F [x] or (g) = (f). So in this
case, F [x]/(f) has no non-trivial ideals and thus is a field, as claimed.

On the other hand, if f is reducible, say f = gh, deg g, deg h < deg f ,
then g(u), h(u) 6= 0 (why?), but g(u)h(u) = f(u) = 0. �

Of course, F [u] ⊆ R will automatically be a domain if R is. In
this case, the Theorem implies that minimal polynomials of algebraic
elements are irreducible. In particular, this follows if R is a field itself.

Example 4.5. Let’s now use these ideas to find the rings R with 4
elements. This could of course be done entirely by hand, but, as we
will see, the machinery just developed will be useful.

Since the prime ring P ⊆ R is in particular a subgroup of R, the
characteristic of R can only be 2 or 4. If char(R) = 4, then no room is
left for other elements, so R ∼= Z4 in this case.

If char(R) = 2, then R contains (the field) Z2 as an embedded sub-
ring. Let’s now first see how far we can get with a hands-on approach.
In addition to 0, 1 ∈ Z2, there are two more elements in R, and let’s
call these a, b, so R = {0, 1, a, b}. We definitely have no choice as far
as the additive structure is concerned: a+ a = b+ b = 0, and a+ 1 = b
since this is the only value that is left for this sum (a+0 = a, a+a = 0,
and a+ 1 = 1 would give a = 0). Similarly, b+ 1 = a. This could also
be summed up by saying that (R,+) ∼= Z2 × Z2.
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Now the multiplication will be determined as soon as we know what
a2 is equal to because b = 1 + a and of course it’s clear what products
involving 0 or 1 are equal to. In principle, we could have a2 = 0, 1,
a, or b, and then the remaining products not involving 0, 1 would have
the following values:

R1 R2 R3 R4

a2 a b 1 0
b2 b a 0 1
ab 0 1 b a

We don’t know, at this point, if these structures are really rings. This
could of course be checked directly, but we’ll switch to the abstract
approach now. Before we do this systematically, here’s one more idea:

Definition 4.24. Let R1, . . . , Rn be rings. Then the direct sum R1 ⊕
. . . ⊕ Rn is defined as the set of all (r1, . . . , rn), rj ∈ Rj, with compo-
nentwise addition and multiplication.

Exercise 4.53. Show that the direct sum of rings is a ring, with 0 =
(0, 0, . . . , 0) and 1 = (1, 1, . . . , 1). Also, show that a direct sum of rings
Rj 6= 0 is never a domain.

This gives one more ring with 4 elements, namely Z2 ⊕ Z2.

Exercise 4.54. Show that Z2⊕Z2 has the same multiplication table as
R1, if we put a = (1, 0).

This Exercise shows that R1 is indeed a ring, and R1
∼= Z2 ⊕ Z2.

Now suppose we have any ring R with |R| = 4, char(R) = 2. As we
discussed, if we identify Z2 with the prime ring of R, then the situation
becomes Z2 ⊆ R. If we take any a ∈ R \ Z2, then R = Z2[a] (why?).
Proposition 4.22 now shows that R ∼= Z2[x]/(f), where f ∈ Z2[x] is the
minimal polynomial of a.

Proposition 4.25. Suppose that f(x) = xn+an−1x
n−1+. . .+a0 ∈ Zk[x]

is monic. Then |Zk[x]/(f)| = kn.

Exercise 4.55. Prove Proposition 4.25.

This shows that in our situation, the minimal polynomial f of a
must be of degree 2; conversely, for any monic f ∈ Z2[x] of degree 2,
we obtain a ring Z2[x]/(f) of characteristic 2 with 4 elements. There
are four such polynomials f(x) = x2 + cx + d, c, d = 0, 1. Of these,
only f(x) = x2 + x+ 1 is irreducible.

Exercise 4.56. Show this please.
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So, by Theorem 4.23, we obtain one field with 4 elements and three
more rings that are not domains. To match these with the ones from
the table above, let a = x + (f) ∈ Z2[x]/(f). Consider, for example,
f(x) = x2 + x. Then a2 = −a = a (because f(a) = 0). This identifies
Z2[x]/(x2 +x) ∼= R1, and it also shows one more time that R1 is indeed
a ring. Note that while Z2[x]/(f) seems like a somewhat abstract
description of a ring, it is really rather concrete and simple to use;
in particular here, when f is monic of degree 2, then the elements of
the ring are s+ ta, s, t ∈ Z2, where a = x+ (f) satisfies f(a) = 0, and
this relation is used to bring products again to the form s + ta. We
are really almost exactly back to the procedure we started out with:
invent a new element, call it a, and introduce a relation that clarifies
how a gets multiplied.

In the same way, we can show that R2, R3, R4 are (rings and) isomor-
phic to Z2[x]/(f) for the other three choices of f : f(x) = x2 + x + 1,
f(x) = x2 + 1, f(x) = x2, in this order.

Finally, observe that if we map Z2[x] → Z2[x]/(x2) by first sending
t 7→ t, t ∈ Z2, x 7→ x+ 1 and then applying the quotient map Z2[x]→
Z2[x]/(x2) then x2 + 1 7→ (x + 1)2 + 1 + (x2) = x2 + (x2) = 0, so
the kernel of this map includes (x2 + 1). Thus we obtain an induced
homomorphism

Z2[x]

��

// Z2[x]/(x2)

Z2[x]/(x2 + 1)

66
.

This map is surjective and, since both rings have 4 elements, also in-
jective; it is an isomorphism. We have shown that R3

∼= R4.

Exercise 4.57. Show this directly, from the addition/multiplication ta-
bles of R3, R4. Then show that except for this pair, no two rings of
order 4 are isomorphic. So there are four non-isomorphic rings of order
4, and exactly one of them is a field.

Exercise 4.58. Suppose that (m,n) = 1. Show that then Zm ⊕ Zn ∼=
Zmn.

Exercise 4.59. Show that there is only one ring of order 6. Show that
a ring of order 12 satisfies char(R) = 6 or = 12, and show that both
values occur.

Exercise 4.60. In view of Proposition 4.25, something has to change
in our analysis above if we now want to find rings of order 12 and
characteristic 6. Can you elaborate on this (revisit the discussion that
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led to Proposition 4.22 perhaps)? Please try to find the three (non-
isomorphic) rings with these data.

Exercise 4.61. What is the order of the smallest non-commutative ring?

Theorem 4.26. Let D be a domain, f ∈ D[x], deg f = n ≥ 0. Then
f has at most n distinct roots (= zeros).

Proof. Suppose that a1, . . . , ak are distinct roots of f . I claim that then∏
(x−aj)|f(x), and we can prove this by induction on k. The case k = 1

is handled by Corollary 4.19. Now consider k ≥ 2. By the induction
hypothesis, f(x) = g(x)

∏k−1
j=1(x − aj). Then g(ak)

∏
(ak − aj) = 0,

and since ak − aj 6= 0 by assumption for j ≤ k − 1, this implies that
g(ak) = 0. Thus g(x) = (x− ak)h(x) by Corollary 4.19 again, and this
gives the desired factorization.

Now deg
∏

(x− aj) = k if there are k factors. This shows that there
cannot be more than n roots. �

In particular, this applies to polynomials with coefficients in a field,
and this is the case we will be most interested in.

Exercise 4.62. Is the statement also true for f ∈ R[x] when R is an
arbitrary (commutative) ring?

Exercise 4.63. Show that there are infinitely many x ∈ H with x2+1 =
0.

Theorem 4.27. Let F be a field. Any finite subgroup of the multi-
plicative group F× is cyclic.

In particular, this applies to F× itself if F is finite: (Z×p , ·) is a cyclic
group of order p− 1.

Proof. Let G ⊆ F× be such a finite subgroup. Recall that n = exp(G)
was defined as the smallest n ≥ 1 with xn = 1 for all x ∈ G. Now con-
sider the polynomial f(x) = xn− 1. By this definition of the exponent
of a group, f(a) = 0 for all a ∈ G. So f has |G| zeros, and now The-
orem 4.26 implies that |G| ≤ n = exp(G). Since always exp(G) ≤ |G|,
we have that |G| = exp(G). Theorem 2.13 shows that G is cyclic. �

Again, the non-commutative version of this fails: Q is a non-cyclic
finite group that can be realized as a subgroup of the (non-abelian)
multiplicative group of H.

Exercise 4.64. Show that (Q×, ·) is not cyclic.
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Exercise 4.65. (a) Let F = {0, a1, a2, . . . , an} be a finite field. Prove
the following generalization of Wilson’s Theorem (see Exercise 2.36):

a1a2 · · · an = −1

(b) Is this also true for F = Z2?

4.5. Divisibility. Throughout this section, D will be a domain. We
want to give an abstract version, in D, of the fundamental theorem of
arithmetic. We start out with some relevant definitions.

Recall that we define divisors in the expected way: we say that a|b
if b = ac for some c ∈ D. Notice that u ∈ D is a unit precisely if u|1.
If a|b and also b|a, then we say that a, b are associates, and we write
a ∼ b.

Proposition 4.28. a ∼ b if and only if a = ub for some u ∈ U(D).

Proof. If a = ub for some unit u, then clearly b|a, but also a|b since
b = u−1a. Thus a ∼ b.

Conversely, if a ∼ b, then b = ac and a = bd, so a = acd. If a 6= 0,
then this implies that cd = 1, so d is a unit, as desired. If a = 0, then
b = 0 also, and then we can just write a = 1b. �

Exercise 4.66. Show that ∼ is an equivalence relation.

We call a a proper divisor of b if a|b, but b - a. Equivalently, a is a
proper divisor of b 6= 0 if b = ac, and c is not a unit.

Definition 4.29. We call a ∈ D irreducible if a 6= 0 and a is not a
unit, and a has no proper divisors other than units.

Exercise 4.67. Show that a ∈ D, a 6= 0 and not a unit, is irreducible if
and only if the only factorizations of a into two factors are a = u(u−1a),
u a unit (equivalently, if a = bc, then b ∼ 1, c ∼ a or the other way
around).

The units of Z are ±1, so the irreducible elements of Z are ±p, p
prime. Put differently, the irreducible elements are exactly the asso-
ciates of the primes.

The irreducible elements look like the proper substitute for primes
in a general domain, so we will now be looking for factorizations into
irreducible elements. As for uniqueness, observe that units can be
introduced at will. More precisely, if a = p1p2 · · · pn, then also a =
(u1p1)(u2p2) · · · (unpn) for any n units u1, . . . , un with u1u2 · · ·un = 1.
This puts a limit on how much uniqueness can be expected in such
factorizations.
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Definition 4.30. A domain D is called a unique factorization domain
(UFD) if: (1) If a ∈ D, a 6= 0, is not a unit, then there are irreducible
elements p1, . . . , pn, n ≥ 1, such that

(4.9) a = p1p2 · · · pn.
(2) If a = p′1p

′
2 · · · p′m is another factorization of this type, then m = n

and, after relabeling, p′j ∼ pj.

In other words, a UFD is a domain in which an analog of the funda-
mental theorem of arithmetic holds.

We would now like to identify conditions that ensure that a given
domain is a UFD. We turn to our proof of the fundamental theorem
of arithmetic for inspiration. The existence of the factorization (4.9)
was obtained by simply factoring a and then its factors, and then the
factors of these elements etc. until the process stops. In a general
domain, there is no guarantee that it will actually stop, so we introduce
our first condition: we say that D satisfies the divisor chain condition
(DCC) if no element has an infinite sequence of proper divisors. More
precisely, if we have a sequence an with an+1|an for all n, then there
exists an N with an ∼ aN for n ≥ N .

Lemma 4.31. If D satisfies the DCC, then every a 6= 0, a not a unit,
has a factorization (4.9) into irreducible elements.

Proof. We already know in outline what we want to do: we just keep
factoring until this is no longer possible. To start the formal argument,
I first claim that if a 6= 0 is not a unit, then a has an irreducible factor.
To see this, look for factorizations of a = bc into two non-units b, c. If
that isn’t possible, then a itself is irreducible and we are done (with the
proof of my claim). Otherwise, write a = a1b1, and then try to factor a1
into non-units. Again, if this isn’t possible, then a1 is irreducible, and
a1|a, as desired. If a1 can be factored, say a1 = a2b2, then try to factor
a2 in the next step, and so on. We obtain a sequence of proper divisors
a1|a, a2|a1, a3|a2, . . .. By the DCC, this will stop at some point: aN for
some N has no proper non-unit divisors, so is irreducible, and aN |a, as
claimed.

Now we can use this as the basic step in a second attempt at (4.9):
Given a as in the Lemma, pick an irreducible factor p1, so a = p1b1. If
b1 is not a unit, then we pick an irreducible factor p2 of b1, and then
we can write a = p1p2b2. We continue in this style. This produces a
sequence of proper divisors b1|a, b2|b1, . . ., which can’t continue forever,
by the DCC; some bn is a unit. �

Exercise 4.68. (a) Consider the formal generalized polynomials f(x) =∑
aqx

q, with exponents q ∈ Q, q ≥ 0, and coefficients aq ∈ Z. These
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form a ring R when added and multiplied in the obvious way. (If you
did Exercise 4.43, then maybe you now recognize this ring as R = Z[M ]
for the monoid M = (Q+,+).) Show that R is a domain that doesn’t
satisfy the DCC.

(b) Show that f(x) = x is not a unit, but f can not be factored into
irreducible elements.

Exercise 4.69. An algebraic integer is a number a ∈ C with f(a) = 0
for some monic polynomial f ∈ Z[x]. These form a subring A ⊂ C
(you can use this fact, you don’t have to prove it here).
(a) Show that A ∩Q = Z and conclude that A has (many) non-units.
(b) Show that A does not have any irreducible elements; in other words,
any non-unit a 6= 0 can be factored, a = bc, into non-units b, c ∈ A.

Next, we turn to uniqueness (= condition (2) from the definition of
a UFD). We will need more than just the DCC for this.

Example 4.6. Let D = Z[
√
−5] = {a + b

√
−5 : a, b ∈ Z}. This is a

domain since it is a subring of the domain C. A key tool for discussing
the arithmetic of such rings is the absolute value of a number x ∈
R. More precisely, we introduce N(x) = |x|2 = a2 + 5b2 (N as in
norm). This last expression shows that N(x) is a non-negative integer.
Also, N(xy) = N(x)N(y), and this trivial identity greatly simplifies
the search for divisors.

First of all, we deduce that the units of R are ±1: indeed, if uv = 1,
then N(u)N(v) = 1, so N(u) = N(v) = 1, but the only elements of
norm 1 are ±1. Next, we conclude that R satisfies the DCC: if x 6= 0
is factored, x = yz, then N(y), N(z) ≤ N(x), and the inequalities are
strict unless N(y) = 1 or N(z) = 1, which makes that element a unit.
So the norm of a proper factor of x is strictly smaller than N(x), and
thus there cannot be an infinite chain of proper divisors.

By Lemma 4.31, elements x 6= 0,±1 have factorizations into irre-
ducible elements. However, some of these factorizations are not unique;
for example,

9 = 3 · 3 =
(
2 +
√
−5
) (

2−
√
−5
)
.

Exercise 4.70. Show that 3, 2±
√
−5 are irreducible and 3 6∼ 2±

√
−5.

If we reexamine the proof of the uniqueness part of the fundamental
theorem of arithmetic, then we find that a key role was played by the
following property of primes in Z (compare Proposition 1.5(b)): if p|ab,
then p|a or p|b.

Definition 4.32. Let D be a domain. A non-unit p ∈ D, p 6= 0 is
called a prime if p|ab implies that p|a or p|b.
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Exercise 4.71. Show that 3, 2±
√
−5 ∈ Z[

√
−5] are not primes.

Lemma 4.33. A prime is irreducible.

Proof. Let p be a prime and suppose that p = ab. Then p|ab, so p|a or
p|b. Let’s say a = pc. This gives that p = p(bc), so b is a unit. We have
seen that there are no factorizations of p that don’t contain a unit, so
p is irreducible, as claimed. �

Theorem 4.34. A domain D is a UFD if and only if: (a) the DCC
holds; (b) every irreducible element of D is a prime.

Proof. We first show that conditions (a), (b) imply that D is a UFD.
We already established the existence of factorizations (4.9) in Lemma
4.31 (from (a) alone). We must now show that these are also unique
in the sense of condition (2) from Definition 4.30. So suppose that
a = p1 · · · pn = p′1 · · · p′m. The irreducible element p′1 is a prime, by
assumption, and p′1|p1 · · · pn. By repeatedly applying the defining con-
dition for primes, we see that p′1 divides some pj, let’s say p1 = up′1;
here u must indeed be a unit, as suggested by the notation, because
the irreducible element p1 doesn’t have non-unit proper factors. We
now obtain that

(4.10) up2 · · · pn = p′2 · · · p′m.
We now proceed by induction on n ≥ 1. If n = 1 (= basis of our
induction), then p′2 · · · p′m = u, but irreducible elements are not units,
so m = 1 and p′1 ∼ p1.

If n > 1, then we apply the induction hypothesis to (4.10); observe
that u doesn’t interfere with this because, for example, up2 is still irre-
ducible. It follows that m = n and p′j ∼ pj for j ≥ 2, after relabeling,
and we saw earlier that also p′1 ∼ p1.

We now show that (a), (b) hold in a UFD. Suppose that b|a, so
a = bc, and consider the factorizations

a = p1p2 · · · pn, b = q1 · · · qk, c = r1 · · · rj
of these elements into irreducible factors. This gives the alternative
factorization a = q1 · · · qkr1 · · · rj, so we now see from uniqueness that
the q’s were really drawn from p1, . . . , pn, up to unit multipliers. So the
divisors of a are exactly the associates of partial products pj1 · · · pjm of
some of the irreducible factors of a. Moreover, this will be a proper
divisor precisely if at least one factor is actually dropped. This estab-
lishes DCC in a UFD; for a as above, a sequence of proper divisors
terminates after at most n steps.

Finally, let p be an irreducible element of a UFD, and suppose that
p|ab. By what we just established, this says that p must be associated
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to one of the irreducible factors from the factorization of a or b (or
both). But then p divides this element, as required. �

In a UFD, we obtain further benefits from the existence and unique-
ness of factorizations into irreducible factors, which are analogs of the
corresponding properties of Z.

Definition 4.35. Let a1, . . . , an be non-zero elements of a domain D.
We say that d is a greatest common divisor of a1, . . . , an, and we write
d = (a1, . . . , an), if d|aj, j = 1, 2, . . . , n, and if also c|aj for all j, then
c|d.

Similarly, we call m a least common multiple and we write m =
lcm(a1, . . . , an) if aj|m for all j, and if k is another element with aj|k
for all j, then m|k.

In general, gcd’s and lcm’s need not exist; if they do and d is a gcd,
then another element e is a gcd (of the same aj’s) precisely if e ∼ d.
Similarly, if m is a lcm, then exactly the associates of m will work, too.

Exercise 4.72. Prove these remarks. Also, show that any n elements
will have a gcd if any 2 elements have a gcd; in this case, ((a, b), c) =
(a, b, c).

Theorem 4.36. In a UFD, gcd’s and lcm’s always exist. Moreover, if
in the factorizations of a, b we pair off associates until this is no longer
possible,

a = p1 · · · pnq1 · · · qj, b = p1 · · · pnr1 · · · rk,
then

(a, b) = p1 · · · pn, lcm(a, b) = p1 · · · pnq1 · · · qjr1 · · · rk.

Proof. I’ll prove the claim about the gcd and leave the lcm part to
the reader. Clearly d = p1 · · · pn divides both a and b. Now suppose
that e is any element with e|a, e|b. Then, as we saw above, to make
e|a happen, we must draw the irreducible factors of e from those of a,
up to associates. Since we want both e|a and e|b, the q’s and r’s are
off-limits; more precisely, if a qm, say, is an associate of an irreducible
factor of b, then that factor can only be a pj because by their definition,
no qm is associated to any rl. So we might as well pick this pj instead
of qm. It then follows that e|d, as required. �

Our next goal is to show that a PID is a UFD. It is useful to re-
late divisibility notions to ideals. Recall that a principal ideal can be
described as (a) = {ax : x ∈ D}.



Rings 95

Lemma 4.37. Let D be a domain. Then a|b if and only if (a) ⊇ (b),
and a is a proper divisor of b precisely if (a) % (b). Two elements a, b
are associates precisely if (a) = (b).

Exercise 4.73. Prove Lemma 4.37.

These simple observations give a very neat description of the gcd in
a PID. If we say it in terms of ideals, then the conditions that d|a,
d|b become (d) ⊇ (a), (d) ⊇ (b). But if a, b ∈ (d), then (d) must also
contain the ideal that is generated by a and b, which (as before) we
write as (a, b). So d|a, d|b if and only if (d) ⊇ (a, b). In particular, d is
a gcd precisely if (d) is the smallest principal ideal that contains (a, b),
if there actually is such a principal ideal.

Now in a PID any ideal is a principal ideal, so (a, b) = (d) for some
d, and such a d is a gcd of a, b. We have shown that the gcd exists in a
PID (we will obtain a second proof of this, when we show below that
a PID is a UFD); moreover, the gcd’s of a, b are the elements d with
(d) = (a, b). So the apparent ambiguity of the notation (namely, (a, b)
can refer to a gcd or to the ideal generated by a, b) actually works to
our advantage here.

Theorem 4.38. A PID D is a UFD. Moreover, if d = (a, b), then
there are x, y ∈ D with ax+ by = d.

Proof. We’ll check (a), (b) from Theorem 4.34. We can now rephrase
DCC as follows: if (a) ⊆ (a1) ⊆ (a2) ⊆ . . . is an increasing chain of
principal ideals, then (an) = (aN) for all n ≥ N for some N . To prove
that this holds, consider I =

⋃
(an).

Exercise 4.74. Show that I is an ideal. Also, show that if the sets don’t
increase, then a union of ideals need not be an ideal.

By the Exercise and since our domain is a PID, we have that I = (b)
for some b. But then b ∈ I, so b ∈ (aN) for some N and thus I = (b) ⊆
(aN) and (an) = (aN) for all n ≥ N .

To verify condition (b) from Theorem 4.34, let p be an irreducible
element, and suppose that p|ab and p - a. Consider the ideal (p, a).
Since (a) is not contained in (p) under our current assumptions, we
have that a /∈ (p), so (p, a) % (p). Since p is irreducible and (p, a), like
any ideal, is a principal ideal, this is only possible if (p, a) = D.

The elements of (p, a) are the linear combinations px+ ay, so it now
follows that we can find x, y so that px+ay = 1 and hence pxb+aby = b.
This implies that p|b.

Finally, if d is a gcd of a, b, then, as we saw above, (d) = (a, b), the
ideal generated by a, b. In particular, d ∈ (a, b), and this says that
there are x, y ∈ D such that ax+ by = d. �
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The statement on the gcd can fail in UFDs that are not PIDs. We
will show in the next section that Z[x] is a UFD.

Exercise 4.75. Find two polynomials f, g ∈ Z[x] (easy ones, if you can)
with (f, g) = 1, but there are no p, q ∈ Z[x] such that fp+ gq = 1.

Example 4.7. Let’s now discuss factorization in the ring Z[
√
−1] =

Z[i] of Gaussian integers. You showed in Exercise 4.50 that Z[i] is
Euclidean, which implies that Z[i] is a PID and thus also a UFD. As in
our discussion of Z[

√
−5], a key tool will be N(x) = |x|2; if x = a+ ib,

then N(x) = a2 + b2, so N(x) is a non-negative integer for x ∈ Z[i].
If u is a unit, then uv = 1, so N(u)N(v) = N(1) = 1, and this implies

that N(u) = 1. The only elements of norm 1 are ±1, ±i. Conversely, it
is clear that these are units, so U = {±1,±i} = {x ∈ Z[i] : N(x) = 1}.

What are the irreducible elements of Z[i]? One class of suspects is
given by the Z-primes 2, 3, 5, 7, 11, . . . and their associates. However,
it will turn out that not all of these are also primes (equivalently:
irreducible) in Z[i].

Let’s first discuss those Z-primes p that satisfy p ≡ 1 mod 4. So
p = 4n+ 1 for some n ≥ 1. Consider the group Z×p . By Theorem 4.27,
this is a cyclic group, so Z×p = 〈a〉 for some a ∈ Z×p . Consider t = an:

we have that t4 = ap−1 = 1, so t2 ∈ Zp is a zero of the polynomial
x2−1 ∈ Zp[x]. This polynomial has degree 2, so has at most two zeros,
and clearly these are given by ±1. Since t2 = a(p−1)/2 6= 1, it follows
that t2 = −1. This is an equality in Zp, so when written out, it says
that t2 ≡ −1 mod p or t2 + 1 = kp for some k ∈ Z.

This can be rewritten as kp = (t + i)(t − i). If p were a prime
in Z[i] also, then it would now follow that p|t ± i for at least one
choice of the sign, but this can’t work. We have shown that p is not
irreducible in Z[i]. In fact, we can be more specific. Since p is not
irreducible, we can factor it: p = xy, and here x, y are not units. This
means that N(x), N(y) > 1, and since N(p) = p2, we must have that
N(x) = N(y) = p. In other words, if x = a + ib, then a2 + b2 = p.
This means that we can factor p as p = (a+ ib)(a− ib). We have also
established one direction of the following beautiful equivalence:

Theorem 4.39. Let p ≥ 2 be a prime in Z. Then p can be written
as the sum of two squares, p = a2 + b2, a, b ∈ Z, if and only if p ≡ 1
mod 4 or p = 2.

Exercise 4.76. Finish the proof by showing that if p is a sum of two
squares, then p = 2 or p ≡ 1 mod 4.

So, to return to our main business of finding the irreducible elements
of Z[i], we have seen that if p ≡ 1 mod 4 or p = 2, then p = a2 + b2,
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and this lets us factor p as p = (a+ ib)(a− ib). These factors a± ib are
irreducible because they have norm p, and this rules out factorizations
that don’t involve a unit.

The Z-primes p ≡ 3 mod 4 stay irreducible in Z[i], by the argument
from above: if we had p = xy with x, y not units, then it would follow
that N(x) = N(y) = p, but this gives a representation of p as a sum of
two squares.

Have we now found all irreducible elements of Z[i]? To answer this,
suppose that ρ ∈ Z[i] is irreducible. Then ρρ > 0, and by factoring this
positive integer into Z-primes and using the fact that ρ is a prime, we
see that ρ|p for some Z-prime p. So write p = ρx. Then N(ρ)N(x) =
p2, and thus either N(ρ) = p2 or N(ρ) = p. In the first case, we must
then have that N(x) = 1, but this makes x a unit, so ρ ∼ p, and these
irreducible elements we found earlier (and we also see that we must
have p ≡ 3 mod 4 in this case).

If N(ρ) = p, then ρ = a+ ib, where a, b ∈ Z with a2 + b2 = p. Again,
we are back in a case already dealt with; it also follows that p = 2 or
p ≡ 1 mod 4.

Now the situation is clear. The irreducible elements of Z[i] are (un-
surprisingly) closely related to the Z-primes; more precisely, a Z-prime
either stays irreducible in Z[i], or it admits a factorization of the form
p = (a+ ib)(a− ib), and then these factors a± ib are irreducible. This
accounts for all irreducible elements of Z[i]. We summarize:

Theorem 4.40. The irreducible elements of Z[i] are exactly the ones
listed below and their associates: (1) Z-primes p with p ≡ 3 mod 4;
(2) elements of the form a+ ib, with a2 + b2 = p for some Z-prime p

Integers a, b as in (2) exist precisely if p = 2 or p ≡ 1 mod 4; given
such a p, there are unique a, b with a2 + b2 = p and 1 ≤ a ≤ b, and
the irreducible elements corresponding to this p are a ± ib and their
associates.

Exercise 4.77. Establish the claims made in the last paragraph.

Exercise 4.78. Factor 15− 3i ∈ Z[i] into irreducible elements.

Exercise 4.79. Complete the work begun in Theorem 4.39 by proving
the following: an integer n ≥ 2 can be written as the sum of two squares
if and only if the primes p ≡ 3 mod 4 that occur in the factorization
n = pe11 · · · p

ek
k (in Z) all have even exponents e. Suggestion: Observe

that n is a sum of two squares precisely if n = (a + ib)(a − ib); now
factor a± ib into primes in Z[i].

Perhaps two classical number theoretic results are worth mentioning
in this context: (a) Any arithmetic progression an + b, n ≥ 0, with
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(a, b) = 1 contains infinitely many primes (Dirichlet); (b) Any non-
negative integer can be written as the sum of four squares (Lagrange).

4.6. Unique factorization in polynomial rings. Recall that F [x]
is a PID if F is a field, so we have unique factorization in polynomial
rings over a field. The general situation is less clear, though; recall also
that Z[x], for example, is not a PID.

Exercise 4.80. Prove the converse of Theorem 4.20: if R[x] is a PID,
then R is a field. Suggestion: Use the homomorphism R[x] → R,
x 7→ 0, a 7→ a (a ∈ R), to represent R ∼= R[x]/I, and then investigate
the ideals of this ring.

Our main goal in this section is to prove

Theorem 4.41 (Gauß). If D is a UFD, then so is D[x].

For f = a0 + . . . + anx
n ∈ D[x], f 6= 0, and D a UFD, we define

the content of f as c(f) = gcd(a0, . . . , an). Here we use the fact that
gcd’s exist in a UFD. Notice, however, that c(f) is only determined
up to associates (since gcd’s are). We’ll be cavalier about this point;
for example, we will often write c(f) = a to indicate that c(f) can be
taken to be a or any associate of a.

If we factor out the (better: a) content of f , we can write f(x) =
c(f)f1(x), with f1 ∈ D[x] and c(f1) = 1. Such a polynomial, with
content 1, is called primitive. Observe that this factorization of f is
unique in the sense that if also f = dg with d ∈ D, g ∈ D[x], g
primitive, then d ∼ c(f) and g = uf1, u ∈ D a unit. To see this,
simply note that if g = b0 + . . .+ bnx

n, then

c(f) = gcd(db0, . . . , dbn) = d gcd(b0, . . . , bn) = dc(g) = d,

so indeed c(f) ∼ d or c(f) = ud, and thus also uf1 = g.

Lemma 4.42 (Gauß). Let f, g ∈ D[x] be primitive, D a UFD. Then
fg is primitive.

Proof. A direct computational approach that looks at the coefficients
of fg and their divisors would work fine, but here’s a slick argument
that saves some work: write h = fg and suppose that c(h) 6∼ 1. Then
there is some irreducible element p ∈ D that divides all coefficients of
h and thus also h itself. Now let D = D/(p). This is a domain because
if we had (a+ (p))(b+ (p)) = 0 = (p), then ab ∈ (p), so p|ab, but then
p|a or p|b and hence a or b represents the zero element of D.

Apply the homomorphism D[x]→ D[x], x 7→ x, a 7→ a to fg = h to
obtain that fg = h and h = 0 since, by assumption, all coefficients of
h represent the zero element of D. Since D[x] is a domain by Theorem
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4.17, it follows that f = 0 or g = 0, but then all coefficients of this
polynomial (let’s say it was f) must be zero (in D). It follows that
p|c(f), contrary to our assumption that f is primitive. This contradic-
tion shows that c(h) ∼ 1. �

We will now compare factorizations in D[x] with those in F [x], where
F = F (D) is the field of fractions of D (see Section 4.2 for this). First
of all, we observe that the essentially unique representation f = cf1
with f1 primitive extends to polynomials from F [x].

Lemma 4.43. Every polynomial f ∈ F [x], f 6= 0, can be written as
f = γf1, with γ ∈ F× and f1 ∈ D[x] primitive. Moreover, if f = δg is
another such factorization, then δ = uγ, f1 = ug for some unit u ∈ D.

Proof. Write f = α0 + . . .+ αnx
n, with αj ∈ F , so αj = ajb

−1
j , aj, bj ∈

D, bj 6= 0. We get the coefficients into D by the obvious method of
multiplying through by the denominators (compare this with what we
would have done in the case D = Z, so F = Q). Let b = b0b1 · · · bn ∈ D,
b 6= 0. Then h := bf ∈ D[x], and we can write h = c(h)f1, with
f1 ∈ D[x] primitive. We obtain that bf = cf1 or f = γf1, with
γ = c/b, as desired.

If also f = δg and δ = d/e, d, e ∈ D, then cef1 = bdg. Since f1, g
are both primitive, we must have that be ∼ cd in D, that is, uce = bd
for some unit u ∈ D. Now our claims follow by rearranging. �

This has the following useful consequence:

Theorem 4.44. Let D be a UFD, f ∈ D[x]. If f = g1g2 in F [x],
gj ∈ F [x], then there exists α ∈ F× such that αg1, α

−1g2 ∈ D[x].
As a consequence, if f ∈ D[x], deg f ≥ 1, is irreducible in D[x], then

f is also irreducible in F [x].

In general, irreducible elements can easily fail to be irreducible in a
larger ring because new elements become available for potential factor-
izations. For example, we saw earlier that primes p ∈ Z, p ≡ 1 mod 4,
are not irreducible in Z[i] ⊃ Z. Observe also that the irreducible el-
ements of D ⊂ D[x] become units in F [x], so the assumption that
deg f ≥ 1 is necessary.

Proof. We focus on the case f 6= 0. Use Lemma 4.43 to write gj = γjhj,
with hj ∈ D[x] primitive and γj ∈ F×. Then f = γ1γ2h1h2, and
h1h2 ∈ D[x] is primitive by Gauß’s Lemma. Now the uniqueness part
of Lemma 4.43 shows that γ1γ2 = uc(f) for some unit u ∈ D from D. In
particular, it follows that γ1γ2 ∈ D, and thus we can take α = γ−11 . �

We are now finally ready for the
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Proof of Theorem 4.41. We will verify the conditions from Theorem
4.34. Let f ∈ D[x], and suppose that g ∈ D[x] is a proper divisor of
f . If deg g = deg f , then the corresponding factorization reads f = ag,
with a ∈ D and a is not a unit. Then ac(g) = c(f), so c(g) is a proper
divisor of c(f).

This observation guarantees that f ∈ D[x] cannot have an infinite
chain of proper divisors: when we pass to a proper divisor, either the
degree goes down, but this can happen at most deg f times, or the
content of the divisor is a proper divisor of c(f), but again this cannot
go on forever because D is a UFD and thus satisfies the DCC. We have
verified that DCC holds in D[x].

Next, we show that every irreducible element of D[x] is a prime. So
let f ∈ D[x] be irreducible, and suppose that f |gh. If deg f ≥ 1, then
f is also irreducible in F [x], by Theorem 4.44. We do know that F [x] is
a UFD, so f |g, say, in F [x]. In other words, fk = g for some k ∈ F [x].
Use Lemma 4.43 to write k = γk1, with k1 ∈ D[x] primitive. Then
g = γfk1, and here fk1 ∈ D[x] is primitive by Gauß’s Lemma, so the
uniqueness part of Lemma 4.43 now shows that γ = uc(g) ∈ D, and
thus f |g in D[x] also.

Exercise 4.81. Let g, h ∈ D[x]. Show that c(gh) = c(g)c(h).

If f = a ∈ D is irreducible and a|gh, then a|c(gh) = c(g)c(h), by
the Exercise, so a|c(g) or a|c(h) because D is a UFD and thus the
irreducible element a is a prime in D. It follows that a also divides the
corresponding polynomial, g or h, in D[x]. �

Example 4.8. You probably know the classical argument for the irra-
tionality of

√
2: assume that p/q solves x2 = 2, derive a contradiction

from the additional assumption that p/q is in reduced form. Theorem
4.44 can be used to streamline and generalize such arguments.

Let f ∈ Z[x] be a monic (= leading coefficient 1) polynomial. Then
I claim that every root of f in R is either an integer or irrational. To
see this, suppose that f(a) = 0 for an a ∈ Q. Then f(x) = (x− a)g(x)
in Q[x]. Now Theorem 4.44 shows that this factorization also works in
Z[x], after adjusting by a factor from Q to get x − a, g(x) into Z[x].
However, since f is monic, any factor in Z[x] must be monic itself,
after adjusting an overall sign if needed (just keep track of the highest
coefficient to see this). We conclude that x − a ∈ Z[x], and this says
that a ∈ Z. (This can also be seen directly, with no tools, and in fact
you perhaps did just that when solving Exercise 4.69.)

If you apply this to f(x) = xn− a, with a a positive integer, you see
that n

√
a is irrational unless a = Nn for some N ∈ N. (The classical
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argument alluded to above makes one wonder if perhaps
√

10 or 3
√

36
could be rational.)

Exercise 4.82. Show that
√

2 +
√

3 is irrational.

Exercise 4.83. Show that the polynomial f(x) = 2x − 1 is irreducible
in Z[x]. However, in Q[x] it can be factored as f(x) = 2 · (x − 1/2).
Please explain.

Here’s a useful criterion for checking irreducibility:

Theorem 4.45 (Eisenstein). Consider f(x) = a0 + . . .+ anx
n ∈ D[x],

D a UFD. If there exists a prime p ∈ D such that p|aj, 0 ≤ j ≤ n− 1,
p - an, p2 - a0, then f is irreducible in F [x].

The special case D = Z, so F = Q, is of particular interest. Notice
also that the conditions from Eisenstein’s criterion do not prevent the
aj from having a common divisor in D, so f need not be irreducible in
D[x].

Proof. As in the proof of Gauß’s Lemma, consider the coefficients mod-
ulo p. More precisely, apply the homomorphism D[x]→ D[x], x 7→ x,
a 7→ a = a + (p). Recall that D = D/(p) is a domain (show it again
please if you are not sure). Our assumptions give that f(x) = anx

n, so
if we have a factorization f = gh, then g = bxk, h = cxn−k for some
0 ≤ k ≤ n and b, c 6= 0. If k = 0 or k = n, then one of the (orig-
inal) polynomials g, h is constant and thus a unit of F [x]. If we had
1 ≤ k ≤ n−1, then it would follow that p divides the constant terms of
both g and h, but this would imply that p2|a0, so this is impossible. �


