
ALGEBRA

CHRISTIAN REMLING

1. Some elementary number theory

1.1. Primes and divisibility. We denote the collection of integers
by Z = {. . . ,−2,−1, 0, 1, . . .}. Given a, b ∈ Z, we write a|b if b = ac
for some c ∈ Z. We then say that a divides b or that a is a divisor of
b. For example, 3|21 or −5|100, but 2 - −3.

Exercise 1.1. Show that divisibility has the following general properties:
(1) if a|b and b|c, then a|c; (2) if a|b and b|a, then a = ±b; (3) if a|b
and a|c, then also a|(bx + cy) for arbitrary x, y ∈ Z; (4) if 1 ≤ b < a,
then a - b; (5) a|x for all x ∈ Z precisely if a = ±1; (6) a and −a have
the same divisors; (7) a|0 for all a ∈ Z.

An integer p ≥ 2 is called a prime if it has no divisors other than
±1, ±p. The first few primes are 2, 3, 5, 7, 11, 13, 17, 19, . . .. The key
tool for studying divisibility in Z is division with remainder: given
a, b ∈ Z, b ≥ 1, there are unique integers m, r, with 0 ≤ r < b, such
that a = mb + r. To see that this is true, just consider the integers
a− xb, for fixed a, b ∈ Z and with x varying over Z. These are equally
spaced, with distance b between consecutive numbers, so exactly one
choice of x produces an integer in {0, 1, . . . , b− 1}.

For example, if we divide 23 by 6, with remainder, then we obtain
23 = 3 · 6 + 5. Or let’s divide −6 by 23: this gives −6 = (−1) · 23 + 17.

Let a, b ∈ Z, not both equal to zero. The greatest common divisor
of a and b is defined as the greatest integer d that divides both a and
b. We denote it by gcd(a, b) or just by (a, b). For example, (6, 10) = 2.
If (a, b) = 1, then we call a, b relatively prime. If a and b are distinct
primes, they will be relatively prime: there aren’t any individual di-
visors, let alone common divisors. However, this sufficient condition
for two integers to be relatively prime is certainly not necessary: for
example, a = 6 and b = 25 are also relatively prime, but neither a nor
b is a prime.

The Euclidean algorithm finds (a, b) by repeated division with re-
mainder. By Exercise 1.1, sign changes do not affect divisors; in par-
ticular, they leave the gcd unchanged, and thus it’s enough to be able
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to handle (a, b) in the case a, b ≥ 1. It will be convenient to assume this
when running the Euclidean algorithm (by the way, what is (a, 0)?).

We put r−1 = a, r0 = b and then define a sequence r1, r2, . . . , rN
recursively by

rn−2 = mnrn−1 + rn;

in other words, in the nth step, we take the two previous members of
the sequence rn−2, rn−1 and divide the former by the latter, to produce
the new remainder rn. Since the remainders decrease strictly (why is
that true?), we must eventually reach rN = 0, after N steps. When this
happens, the algorithm stops and outputs rN−1 = (a, b) as the desired
gcd.

I’ll give a general proof that this works in a moment, but let’s first
work an example. Let a = 4620, b = 126. We start out by dividing a
by b:

4620 = 36 · 126 + 84,

so r1 = 84. Next, we divide r0 = b by r1. Since 126 = 84 + 42, this
gives the new remainder r2 = 42. We continue in this way and divide
84 by 42. Since this doesn’t leave a remainder, we have that r3 = 0
and thus N = 3 and (4620, 126) = r2 = 42.

Exercise 1.2. Find (4680, 756) and (81, 210) by running the Euclidean
algorithm by hand.

Exercise 1.3. Show that if a < b, then r1 = a (in other words, the
first step just swaps a and b if they originally appeared in the “wrong”
order).

Let’s now discuss the general theory.

Theorem 1.1. The Euclidean algorithm, as described above, computes
rN−1 = (a, b).

Proof. Since rN = 0, we have that rN−2 = mN−1rN−1, so rN−1|rN−2,
and then rN−3 = mN−2rN−2+rN−1, so also rN−1|rN−3. We can continue
in this way to see that rN−1|rn for all n ≤ N−1, and since the algorithm
started with r−1 = a and r0 = b in the first two steps, we arrive at the
conclusion that rN−1|a, rN−1|b.

It remains to be shown that rN−1 is the largest number that divides
both a and b. To see this, let c be any common divisor of a and b.
I claim that then c|rn for all n ≥ −1. This again follows by just
keeping track of what the algorithm does, step by step. Clearly, since
a = m1b+ r1, we have that c|r1. Next, from b = m2r1 + r2, we then see
that c|r2, and we can continue until the algorithm stops to establish
my claim. In particular, d = (a, b) must satisfy d|rN−1, so d ≤ rN−1
and it follows that d = rN−1, as claimed. �
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From the Euclidean algorithm, we obtain a very useful decription of
the gcd:

Theorem 1.2. The gcd of a, b can be characterized as the smallest
positive integer of the form ax+ by, x, y ∈ Z.

Corollary 1.3. The integers a, b are relatively prime precisely if there
are x, y ∈ Z so that ax+ by = 1.

Proof of Theorem 1.2. Write d = (a, b). We first show that there are
x, y ∈ Z with d = ax+ by. In fact, x, y can also be extracted from the
Euclidean algorithm. Starting at the end again, we first observe that

(1.1) d = rN−1 = rN−3 −mN−1rN−2.

In fact, it is true in general that rn = rn−2 − mnrn−1, that is, each
remainder is a linear combination of the previous two remainders. We
can now successively plug these linear combinations into (1.1) to (even-
tually) express d = rN−1 as a linear combination of a = r−1 and b = r0.

To conclude the proof, we must now show that the set of numbers
ax + by, x, y ∈ Z, does not contain positive integers that are smaller
than d. That is clear, however, because d divides any such linear com-
bination ax+ by, so ax+ by ≥ d if ax+ by is positive. �

Exercise 1.4. We defined the Euclidean algorithm only for a, b ≥ 1.
Convince yourself that Theorem 1.2 and its Corollary hold for arbitrary
a, b ∈ Z, not both zero.

Example 1.1. We saw above that (4620, 126) = 42, so by the Theorem,
there are x, y ∈ Z so that 4620x+ 126y = 42. Moreover, by the proof,
we can systematically find x, y from the Euclidean algorithm. Let us
do this here; I’ll make use of the divisions with remainder we did above,
when we ran the Euclidean algorithm. We must start at the end. The
algorithm terminated in N = 3 steps, and we obtained d = r2 = 42
from 126 = 84 + 42 or, equivalently, 42 = 126− 84. Working our way
from the bottom up towards the top, we recall that we obtained r1 = 84
from the division 4620 = 36 · 126 + 84, so 84 = 4620 − 36 · 126. Plug
this into the previous equation to obtain that

42 = 126− (4260− 36 · 126) = −4260 + 37 · 126,

which is the desired representation of the gcd, with x = −1 and y = 37.

Lemma 1.4. If (a, b) = (a, c) = 1, then also (a, bc) = 1.

Proof. By the Corollary, ax+by = au+cv = 1 for suitable u, v, x, y ∈ Z.
It follows that bcvy = (1 − ax)(1 − au) = 1 − az for some z ∈ Z, by
multiplying out the RHS. This says that (a, bc) = 1, as desired. �
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Proposition 1.5. (a) If (a, b) = 1 and a|c, b|c, then also ab|c.
(b) If p is a prime and p|ab, then p|a or p|b.

Exercise 1.5. Give (simple) examples that show that both parts fail if
the assumptions ((a, b) = 1 and p prime, respectively) are dropped.

Proof. (a) By assumption, c = ad = be and also ax+by = 1 for suitable
x, y ∈ Z, so

c = c · ax+ c · by = beax+ adby,

and it is now clear that ab|c, as desired.
(b) A prime has no divisors ≥ 2 other than itself, so (p, a) = 1 unless

p|a. So if what we are trying to show were false, then p would be
relatively prime to both a and b, but then also to ab, by Lemma 1.4.
This contradicts our assumption that p|ab, that is, (p, ab) = p. �

With these preparations out of the way, we can now give a proof,
from scratch, of the fundamental theorem of arithmetic:

Theorem 1.6. Every integer a ≥ 1 can be written as a product of
primes a = p1p2 · · · pn. Moreover, this factorization is essentially unique
in the sense that if also a = p′1p

′
2 · · · p′m, then m = n and, after relabel-

ing suitably, pj = p′j.

Proof. We first establish the existence of such a factorization into primes.
If a is itself a prime, then there’s nothing to show: take n = 1, p1 = a.
(Also, in the trivial case a = 1, we take n = 0, which works formally
because the empty product is, by definition, equal to 1.) If a ≥ 2 is
not a prime, then a = bc with 1 < b, c < a, and now either b, c are
both primes and we’re done, with n = 2, p1 = b, p2 = c, or at least
one of them has non-trivial divisors, which again must be smaller than
the original number. We then factorize further, and since the numbers
keep getting smaller as long as we still have divisors, this must stop at
some point, and we obtain the desired factorization.

Exercise 1.6. Give a more formal version of this very simple argument;
more precisely, prove the existence of a factorization into primes by an
induction on a.

We now prove the uniqueness claim, by induction on n. If n = 0,
then a = 1, and we must have that m = 0 also, since p′j ≥ 2. Now
suppose that n ≥ 1 and that the claim holds for n−1. Clearly, p1|a, and
by repeatedly applying Proposition 1.5(b), we see that p1|p′j for some j;
for convenience, let’s assume that j = 1. Since p1, p

′
1 are both primes,

this can only happen if p1 = p′1. It follows that p2 · · · pn = p′2 · · · p′m,
and since the product on the LHS has n−1 prime factors, the induction
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hypothesis now gives that n−1 = m−1 and the primes in both products
agree, after relabeling. �

In the factorization from Theorem 1.6, repeated primes are of course
possible, for example 12 = 2 · 2 · 3. We usually reorganize slightly and
write prime factorizations in the form

a = pe11 p
e2
2 · · · penn ,

with exponents ej ≥ 0.

Theorem 1.7 (Euclid). There are infinitely many primes.

Proof. Given primes p1, . . . pN , consider a = p1p2 · · · pN + 1. Then
a > 1, so some prime at least must occur in its factorization (a itself
could be prime), but clearly none of p1, . . . , pN divides a, so there must
be an additional prime. �

1.2. Congruences.

Definition 1.8. An equivalence relation on a set A is a binary relation
∼ that is: (1) reflexive: a ∼ a for all a ∈ A; (2) symmetric: if a ∼ b,
then b ∼ a; (3) transitive: if a ∼ b and b ∼ c, then a ∼ c.

For example, equality = is an equivalence relation on any set A, and
so is the relation defined by letting a ∼ b hold for any two a, b ∈ A.
We will see a more interesting example in a moment.

In general, equivalence relations are essentially the same thing as
partitions. Here, we call a collection of non-empty subsets Aα ⊆ A
(finitely or infinitely many, and the sets themselves may be finite or
infinite) a partition of A if Aα ∩ Aβ = ∅ for α 6= β and

⋃
αAα = A.

Exercise 1.7. Elaborate on the claim made above. More specifically,
show the following: (a) If ∼ is an equivalence relation on A and we
define Aa = {b ∈ A : b ∼ a}, for a ∈ A, then, for any two a, b ∈ A,
either Aa ∩ Ab = ∅ or Aa = Ab. Moreover,

⋃
a∈AAa = A, so if we view

the {Aa : a ∈ A} as a collection of sets, then we have a partition (which
is not indexed by a ∈ A).

(b) Conversely, given a partition {Aα}, define a relation by declaring
a ∼ b precisely if a, b ∈ Aα for some α (note that a, b are required to
lie in the same set). Show that ∼ is an equivalence relation on A.

(c) Parts (a) and (b) provide operations that produce a partition
from a given equivalence relation and vice versa. Show that these
operations are inverses of each other. Maybe you want to set up some
notation to formulate this clearly: for an equivalence relation R, let
F (R) be the partition defined in part (a). Similarly, given a partition
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P , let G(P ) be the equivalence relation defined in part (b). Then you
want to show that G(F (R)) = R and F (G(P )) = P .

General comment: Everything in this problem is completely straight-
forward, you should be able to do it in your head. Just make sure you
don’t get intimidated by the notation.

In the sequel, we will pass freely between equivalence relations and
partitions, as spelled out in this Exercise. Given an equivalence rela-
tion, we call Aa = {b ∈ A : b ∼ a} the equivalence class of a; also,
it is common to denote this by Aa = (a) or by a. A member b ∈ (a)
is called a representative of the equivalence class of a; in other words,
a representative is just a b with b ∼ a. Finally, we will often want to
consider the set {(a) : a ∈ A} of equivalence classes; it is common to
denote this by A/ ∼.

Now fix an integer k ≥ 1. A particularly important equivalence
relation on Z is obtained by defining

m ≡ n mod k if k|m− n.
If this holds, we say that m,n are congruent modulo k.

Exercise 1.8. Show that congruence modulo k indeed is an equivalence
relation.

Exercise 1.9. What is the equivalence class of an n ∈ Z with respect
to congruence modulo k?

Congruence is an important equivalence relation because it respects
the algebraic structure of Z. Let’s make this more precise. I claim
that if m ≡ m′ mod k and n ≡ n′ mod k, then also m+ n ≡ m′ + n′

mod k and mn ≡ m′n′ mod k. Let’s verify the second claim: we
know that m′ = m + kx and n′ = n + ky for some x, y ∈ Z. Thus
m′n′ = mn + k(nx + my + kxy), and this shows that m′n′ ≡ mn, as
desired.

Exercise 1.10. Prove the claim about addition in the same way.

These properties allow us to define addition and multiplication on the
equivalence classes, as follows: (m) + (n) := (m+ n), (m)(n) := (mn).
Here, m+ n and mn on the right-hand sides will depend on the choice
of representatives; recall in this context that m is not determined by
its equivalence class. Rather, we have that (m′) = (m) if (and only if)
m′ ∈ (m). However, the argument from the preceding paragraph and
the Exercise show that this will not cause problems here: while m, n are
not uniquely determined by their equivalence classes, and thus m + n
isn’t either, the equivalence class (m + n) of m + n is independent of
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these choices, and of course all the same remarks apply to the product
(mn).

This collection of equivalence classes mod k is denoted by Zk or
(for reasons that will become clear later) by Z/(k). The equivalence
classes themselves are also called residue classes in this context. We
will later develop a more abstract view of these matters. For now, let
me just present one result (Fermat’s little theorem) as a teaser.

Exercise 1.11. Show that +, · in Zk obey (most of) the usual rules.
More precisely, let x, y, z ∈ Zk. Show that: (1) x + y = y + x and
xy = yx; (2) (x + y) + z = x + (y + z) and (xy)z = x(yz); (3)
x + 0 = x and x · 1 = x; (4) there is an additive inverse −x ∈ Zk
such that x+ (−x) = 0; in fact, we can obtain −x as −x = (−1)x; (5)
x(y + z) = xy + xz.

We have followed the usual practice of blurring the distinction be-
tween equivalence classes (= members of Zk) and their representatives
(which are integers, from Z): 0 in part (3) really stands for the equiv-
alence class (0) ∈ Zk of 0 ∈ Z, and similar remarks apply to parts (4),
(5).

By and large this says that we can just manipulate algebraic ex-
pressions in Zk the way we are used to. Some care must definitely
be exercised, however. For example, 2 · 3 ≡ 0 mod 6 even though
2 6≡ 0, 3 6≡ 0 mod 6, so Z6 (unlike Z) has the property that zero may
be written as a product of non-zero factors: 0 = 2 · 3

Proposition 1.9. Let k ≥ 1 and a ∈ Z be given. Then the congruence

ax ≡ 1 mod k

has a solution x precisely if a and k are relatively prime. In particular,
this holds if k = p is a prime and a 6≡ 0 mod p.

Proof. When written out, the congruence requires us to find x, y ∈ Z
so that ax + ky = 1, and such x, y exist precisely if a, k are relatively
prime, by Corollary 1.3. �

Theorem 1.10 (Fermat). If p is a prime and a 6≡ 0 mod p, then
ap−1 ≡ 1 mod p.

Proof. In this proof, I am again not going to carefully distinguish be-
tween residue classes and their representatives in the notation.

Observe that there are exactly p residue classes modulo p: more
specifically, by division by p with remainder, we see that each n ∈ Z is
congruent to exactly one of 0, 1, . . . , p− 1. Now multiply the non-zero
residue classes by a to obtain a, 2a, . . . , (p − 1)a. I claim that these
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are still the residue classes 1, 2, . . . , p− 1, possibly in a different order.
Indeed, Proposition 1.9 guarantees that any 1 ≤ n ≤ p − 1 can be
written as n ≡ ax mod p, for some 1 ≤ x ≤ p − 1; note also that
x = 0 can not be the solution that the Proposition says exists because
a0 ≡ 0. So the list a, 2a, . . . , (p − 1)a contains all non-zero residue
classes, and this implies that there can’t be repetitions because there
are p− 1 entries in the list and also p− 1 residue classes that we know
are listed.

In particular, this implies that

1 · 2 · · · (p− 1) ≡ a · (2a) · · · ((p− 1)a) mod p

because on both sides, we are multiplying the same residue classes,
only in a different order (perhaps). Manipulating the RHS further, we
see that

A ≡ Aap−1 mod p, A ≡ 1 · 2 · · · (p− 1);

in these steps, I’ve made repeated use of the properties from Exercise
1.11. With the help of Proposition 1.9 again, we can now successively
“divide through” by 1, 2, . . . , p−1 to conclude that 1 ≡ ap−1, as claimed
(more precisely, for each n = 1, 2 . . . , p− 1, I multiply both sides by an
x with nx ≡ 1). �

Exercise 1.12. Compute 25 mod 6. So Fermat’s little theorem may
fail if p is not a prime. Where in the proof did I use this assumption?
(I really used it twice, find both instances please.)

Exercise 1.13. As a by-product of this proof we saw that if ax ≡ ay
mod p, a 6≡ 0 mod p, then x ≡ y mod p (for combinatorial reasons).
Show this directly.


