Let $L: P_{2} \rightarrow P_{3}$ be the linear transformation given by the formula

$$
L(p(t))=t p(t) \text { where } p(t) \text { is any polynomial in } P_{2}
$$

1. (9 Points) Find a basis for and dimension of $\operatorname{Ker}(L)$.

From definition of Kernel, we know that a polynomial $p(t)=a t^{2}+b t+c$ is in $\operatorname{Ker}(L)$ if

$$
L(p(t))=0 \Rightarrow t \cdot p(t)=0 \Rightarrow t\left(a t^{2}+b t+c\right)=0 \Rightarrow a t^{3}+b t^{2}+c t=0
$$

We know that a polynomial is zero if all the coefficients are zero. Hence

$$
a t^{3}+b t^{2}+c t=0 \Rightarrow a=0, b=0, c=0
$$

This tells us that if $p(t)=a t^{2}+b t+c$ is in $\operatorname{Ker}(L)$ then we are forced to conclude that $p(t)=0$. Hence

$$
\operatorname{Ker}(L)=\{0\} \Rightarrow \operatorname{dim}(\operatorname{Ker}(L))=0
$$

2. (9 Points) Find a basis for and dimension of Image( $L$ ).

From definition of Image, we know that Image $(L)$ consists of all polynomials in $P_{3}$ which can be obtained as $L(p(t))$, for some polynomial $p(t)$ in $P_{2}$. Hence, the image consists of all polynomials of the form

$$
\mathbf{v}=t\left(a t^{2}+b t+c\right)=a t^{3}+b t^{2}+c t=a\left(t^{3}\right)+b\left(t^{2}\right)+c(t) \Rightarrow \operatorname{Image}(L)=\operatorname{Span}\left(t^{3}, t^{2}, t\right)
$$

Since the three vectors $t^{3}, t^{2}$ and $t$ are clearly linearly independent, they form a basis for $\operatorname{Image}(L)$. Thus we have

$$
\text { Basis for } \operatorname{Image}(L)=\left\{t^{3}, t^{2}, t\right\} \Rightarrow \operatorname{dim}(\operatorname{Image}(L))=3
$$

3. Use parts (1) and (2) above to decide whether $L$ is one-to-one or onto. Explain.

We know that a linear transformation is one-to-one if and only if $\operatorname{dim}(\operatorname{Ker}(L))=0$ and it is onto if and only if $\operatorname{Image}(L)=P_{3}$. From part (1), we see that $L$ is indeed one-to-one. From part (2), we see that $\operatorname{Image}(L) \neq P_{3}$ (because $\operatorname{dim}(\operatorname{Image}(L))=3$ whereas $\operatorname{dim}\left(P_{3}\right)=4$ ) and hence $L$ is not onto.

