1. Let $V=M_{22}$ and $W=$ subset of all upper triangular matrices. Is W a vector subspace ? Explain.

We see that W consists of 2×2 matrices of the form $\left[\begin{array}{ll}a & b \\ 0 & d\end{array}\right]$ with real numbers a, b, d. Let $\mathbf{w}_{1}=$ $\left[\begin{array}{cc}a_{1} & b_{1} \\ 0 & d_{1}\end{array}\right], \mathbf{w}_{2}=\left[\begin{array}{cc}a_{2} & b_{2} \\ 0 & d_{2}\end{array}\right]$ and c any real number. Then

$$
\begin{aligned}
\mathbf{w}_{1} \oplus \mathbf{w}_{2}= & {\left[\begin{array}{cc}
a_{1} & b_{1} \\
0 & d_{1}
\end{array}\right]+\left[\begin{array}{cc}
a_{2} & b_{2} \\
0 & d_{2}
\end{array}\right]=\left[\begin{array}{cc}
a_{1}+a_{2} & b_{1}+b_{2} \\
0 & d_{1}+d_{2}
\end{array}\right] \text { which lies in } W \text { and } } \\
& c \odot \mathbf{w}_{1}=c\left[\begin{array}{rr}
a_{1} & b_{1} \\
0 & d_{1}
\end{array}\right]=\left[\begin{array}{cc}
c a_{1} & c b_{1} \\
0 & c d_{1}
\end{array}\right] \text { which lies in } W .
\end{aligned}
$$

Hence W is a vector subspace.
2. Let $V=$ all non-zero real numbers. Let $\mathbf{u} \oplus \mathbf{v}=\mathbf{u v}$ and $c \odot \mathbf{u}=c \mathbf{u}$. Is V a vector space ? Explain.

If we take $c=0$ and any \mathbf{u} in V then $c \odot \mathbf{u}=c \mathbf{u}=0 \mathbf{u}=0$. But 0 does not lie in V and hence V is not closed under the \odot operation. Hence V is not a vector space.

Note that all the properties $(a),(1),(2),(3),(4)$ are satisfied. In particular, the role of the $\mathbf{0}$ vector is played by the real number 1 and if \mathbf{u} is any real number then the vector $-\mathbf{u}$ will be given by $1 / u$. (Check that these choices satisfy properties (3) and (4)).
3. Let $V=P_{2}$ and $W=$ all polynomials $p(t)$ in V such that $p(0)=0$. Is W a vector subspace ? Explain.

We see that W consists of those polynomials $p(t)=a_{2} t^{2}+a_{1} t+a_{0}$ such that $p(0)=0$. This implies that $a_{0}=0$, i.e. $p(t)=a_{2} t^{2}+a_{1} t$. Let $q(t)=b_{2} t^{2}+b_{1} t$ and c be any real number. Then

$$
\begin{gathered}
p(t) \oplus q(t)=\left(a_{2} t^{2}+a_{1} t\right)+\left(b_{2} t^{2}+b_{1} t\right)=\left(a_{2}+b_{2}\right) t^{2}+\left(a_{1}+b_{1}\right) t \text { which lies in } W \text { and } \\
c \odot p(t)=c\left(a_{2} t^{2}+a_{1} t\right)=c a_{2} t^{2}+c a_{1} t \text { which lies in } W .
\end{gathered}
$$

Hence W is a vector subspace.

