1. Let

$$
A=\left[\begin{array}{cccc}
1 & 7 & 0 & 3 \\
-1 & 0 & 2 & 5 \\
2 & 3 & -4 & 0 \\
0 & -3 & -1 & 2
\end{array}\right]
$$

(a) Find the cofactors A_{23} and A_{42}.

- $A_{23}=(-1)^{2+3} \operatorname{det}\left(\left[\begin{array}{ccc}1 & 7 & 3 \\ 2 & 3 & 0 \\ 0 & -3 & 2\end{array}\right]\right)=40$.
- $A_{42}=(-1)^{4+2} \operatorname{det}\left(\left[\begin{array}{ccc}1 & 0 & 3 \\ -1 & 2 & 5 \\ 2 & -4 & 0\end{array}\right]\right)=20$.
(b) Suppose we have $A_{11}=-87, A_{12}=10, A_{13}=-36, A_{14}=-3, A_{21}=101, A_{22}=-14, A_{24}=-1, A_{31}=$ $81, A_{32}=-12, A_{33}=38, A_{34}=1, A_{41}=-122, A_{43}=-46, A_{44}=-6$. Then find the adjoint matrix $\operatorname{adj}(A)$ and A^{-1}, if it exists.

$$
\operatorname{adj}(A)=\left[\begin{array}{llll}
A_{11} & A_{21} & A_{31} & A_{41} \\
A_{12} & A_{22} & A_{32} & A_{42} \\
A_{13} & A_{23} & A_{33} & A_{43} \\
A_{14} & A_{24} & A_{34} & A_{44}
\end{array}\right]=\left[\begin{array}{cccc}
-87 & 101 & 81 & -122 \\
10 & -14 & -12 & 20 \\
-36 & 40 & 38 & -46 \\
-3 & -1 & 1 & -6
\end{array}\right]
$$

We have $\operatorname{det}(A)=a_{11} A_{11}+a_{12} A_{12}+a_{13} A_{13}+a_{14} A_{14}=(1)(-87)+(7)(10)+(0)(-36)+(3)(-3)=$ -26 . Since $A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)$, we get

$$
A^{-1}=\left[\begin{array}{cccc}
87 / 26 & -101 / 26 & -81 / 26 & 122 / 26 \\
-10 / 26 & 14 / 26 & 12 / 26 & -20 / 26 \\
36 / 26 & -40 / 26 & -38 / 26 & 46 / 26 \\
3 / 26 & 1 / 26 & -1 / 26 & 6 / 26
\end{array}\right]
$$

2. Solve the following linear system using Cramer's rule.

$$
2 x+3 y=5, \quad x-5 y=2
$$

The matrix form of the linear system is $A \mathbf{x}=\mathbf{b}$, with $A=\left[\begin{array}{cc}2 & 3 \\ 1 & -5\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}5 \\ 2\end{array}\right]$. Replacing the first column of A by \mathbf{b} we get the matrix $A_{1}=\left[\begin{array}{cc}5 & 3 \\ 2 & -5\end{array}\right]$ and replacing the second column of A by \mathbf{b} we get the matrix $A_{2}=\left[\begin{array}{ll}2 & 5 \\ 1 & 2\end{array}\right]$. Now Cramer's rule tells us that

$$
x_{1}=\frac{\operatorname{det}\left(A_{1}\right)}{\operatorname{det}(A)}=\frac{-31}{-13}=\frac{31}{13} \text { and } x_{2}=\frac{\operatorname{det}\left(A_{2}\right)}{\operatorname{det}(A)}=\frac{-1}{-13}=\frac{1}{13}
$$

