1. (5 Points) Let A be a $n \times n$ skew-symmetric matrix. Show that if k is any even integer, then the matrix A^{k} is symmetric.
This problem is similar to Problem 28 of section 1.5 in homework 2

Since A is skew-symmetric, we have $A^{T}=-A$. We have to show that A^{k} is symmetric, i.e., $\left(A^{k}\right)^{T}=A^{k}$. We have

$$
\left(A^{k}\right)^{T}=\left(A^{T}\right)^{k}=(-A)^{k}=(-1)^{k} A^{k}=A^{k} \text { since } k \text { is even. }
$$

2. (7 Points) Consider the linear system $(A B)^{T} \mathbf{x}=\mathbf{b}$, with A, B invertible matrices. Find the solution to the linear system if $A^{-1}=\left[\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right], B^{-1}=\left[\begin{array}{ll}0 & -4 \\ 1 & -1\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}2 \\ 2\end{array}\right]$.

This problem is similar to problem 38 of Section 1.5 of homework 2 and problem 2 of Quiz II

We have

$$
(A B)^{T} \mathbf{x}=\mathbf{b} \Rightarrow B^{T} A^{T} \mathbf{x}=\mathbf{b} \Rightarrow \mathbf{x}=\left(B^{T} A^{T}\right)^{-1} \mathbf{b} \Rightarrow \mathbf{x}=\left(A^{T}\right)^{-1}\left(B^{T}\right)^{-1} \mathbf{b} \Rightarrow \mathbf{x}=\left(A^{-1}\right)^{T}\left(B^{-1}\right)^{T} \mathbf{b}
$$

Hence

$$
\mathbf{x}=\left[\begin{array}{ll}
2 & 2 \\
1 & 3
\end{array}\right]^{T}\left[\begin{array}{ll}
0 & -4 \\
1 & -1
\end{array}\right]^{T}\left[\begin{array}{l}
2 \\
2
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
2 & 3
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
-4 & -1
\end{array}\right]\left[\begin{array}{l}
2 \\
2
\end{array}\right]=\left[\begin{array}{cc}
-4 & 1 \\
-12 & -1
\end{array}\right]\left[\begin{array}{l}
2 \\
2
\end{array}\right]=\left[\begin{array}{c}
-6 \\
-26
\end{array}\right]
$$

3. (8 Points) Consider the matrix transformation $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by $f(\mathbf{u})=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 1 & 0\end{array}\right]$ u. Determine whether $\mathbf{w}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $\mathbf{w}_{2}=\left[\begin{array}{c}4 \\ -2 \\ 4\end{array}\right]$ are in the range of f.

This problem is similar to Problems 9 and 13 of section 1.6 in homework 2

From the definition of f we see that

$$
f\left(\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]\right)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{1}
\end{array}\right]
$$

We know that a vector \mathbf{w} in \mathbb{R}^{3} is in the range of f if we can find a vector \mathbf{u} in \mathbb{R}^{2} such that $f(\mathbf{u})=\mathbf{w}$. For \mathbf{w}_{1} and \mathbf{w}_{2} we get the equations

$$
f(\mathbf{u})=\mathbf{w}_{1} \Rightarrow\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{1}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \Rightarrow \text { inconsistent, } f(\mathbf{u})=\mathbf{w}_{2} \Rightarrow\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{1}
\end{array}\right]=\left[\begin{array}{c}
4 \\
-2 \\
4
\end{array}\right] \Rightarrow u_{1}=4, u_{2}=-2
$$

Hence, \mathbf{w}_{1} is not in the range of f and \mathbf{w}_{2} is in the range of f.

