1. (7 Points) Write the matrix $A=\left[\begin{array}{ccc}1 & 7 & -2 \\ 0 & 3 & 2 \\ -5 & 0 & 11\end{array}\right]$ as a sum of a symmetric matrix and a skew-symmetric matrix.

We have $A=\frac{1}{2}\left(A+A^{T}\right)+\frac{1}{2}\left(A-A^{T}\right)$, where $A+A^{T}$ is symmetric and $A-A^{T}$ is skew-symmetric. In this case, we have $A^{T}=\left[\begin{array}{ccc}1 & 0 & -5 \\ 7 & 3 & 0 \\ -2 & 2 & 11\end{array}\right]$. Hence

$$
A=\left[\begin{array}{ccc}
1 & 7 / 2 & -7 / 2 \\
7 / 2 & 3 & 1 \\
-7 / 2 & 1 & 11
\end{array}\right]+\left[\begin{array}{ccc}
0 & 7 / 2 & 3 / 2 \\
-7 / 2 & 0 & 1 \\
-3 / 2 & -1 & 0
\end{array}\right]
$$

2. (7 Points) Consider the linear system given by $A B^{T} \mathbf{x}=\mathbf{b}$ with A, B invertible matrices. Find the solution if $A^{-1}=\left[\begin{array}{cc}2 & -1 \\ 4 & 3\end{array}\right], B^{-1}=\left[\begin{array}{cc}0 & 5 \\ -1 & 0\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$.

We have $A B^{T} \mathbf{x}=\mathbf{b} \Rightarrow \mathbf{x}=\left(A B^{T}\right)^{-1} \mathbf{b} \Rightarrow \mathbf{x}=\left(B^{T}\right)^{-1} A^{-1} \mathbf{b} \Rightarrow \mathbf{x}=\left(B^{-1}\right)^{T} A^{-1} \mathbf{b}$. Substituting the values of B^{-1}, A^{-1} and \mathbf{b}, we get

$$
\mathbf{x}=\left(B^{-1}\right)^{T} A^{-1} \mathbf{b}=\left[\begin{array}{cc}
0 & -1 \\
5 & 0
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
4 & 3
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{c}
-11 \\
15
\end{array}\right]
$$

3. (6 Points) Consider the matrix transformation $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $f(\mathbf{u})=\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]$ u. Sketch $\mathbf{u}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $f(\mathbf{u})$. Give a geometric description of the matrix transformation f.

We have

$$
f\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right)=\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
-1 \\
-2
\end{array}\right]
$$

If we plot these points on the (x, y)-plane, we see that, geometrically, f reflects the vector \mathbf{u} about the line $y=-x$.

