State whether the following statements are true or false.

1. The following linear system is consistent.

$$
x+z=2, \quad x-y+2 z=0, \quad 3 x+2 y+z=5 .
$$

We have $2 \times$ (eqn. two) (eqn. three) : $5 x+5 z=5 \Rightarrow x+z=1$. But we cannot satisfy both $x+z=1$ and $x+z=2$. Hence, the system has no solution, which means the system is inconsistent. Hence the statement is FALSE
2. We have

$$
\left(\begin{array}{cc}
1 & 0 \\
-3 & 2 \\
5 & 0
\end{array}\right)\left(\begin{array}{ccc}
4 & 0 & 2 \\
1 & -3 & 11
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
5 & 3
\end{array}\right)
$$

If we multiply a 3×2 matrix with a 2×3 matrix, we get a 3×3 matrix, not a 2×2 matrix. Hence, the statement is FALSE
3. Let

$$
A=\left(\begin{array}{ccc}
2 & 0 & 1 \\
0 & 5 & 7 \\
-1 & -3 & 1
\end{array}\right), B=\left(\begin{array}{cc}
1 & 0 \\
1 & 1 \\
1 & 0
\end{array}\right), C=\left(\begin{array}{ccc}
1 & 2 & 9 \\
0 & 5 & 7
\end{array}\right)
$$

Then

$$
\left(A^{T} B\right)^{T}=C
$$

We have $A^{T}=\left(\begin{array}{ccc}2 & 0 & -1 \\ 0 & 5 & -3 \\ 1 & 7 & 1\end{array}\right)$. Hence $A^{T} B=\left(\begin{array}{ll}1 & 0 \\ 2 & 5 \\ 9 & 7\end{array}\right)$. This implies that

$$
\left(A^{T} B\right)^{T}=\left(\begin{array}{ccc}
1 & 2 & 9 \\
0 & 5 & 7
\end{array}\right)=C
$$

Hence the statement is TRUE

