MATH 3333

Midterm II
April 3, 2008

Name:

I.D. no. :

- Calculators are not allowed. The problems are set so that you should not need calculators at all.
- Show as much work as possible. Answers without explanation will not receive any credit.
- If you preform any row or column operations in a problem, record them using standard notations.
- Best of Luck.
i) Let $V=R^{4}$ and W be the subset of R^{4} consisting of all vectors of the form $\left[\begin{array}{c}a-b \\ a+c \\ c+b \\ a-c\end{array}\right]$, where a, b, c are real numbers.
a) (8 Points) Show that W is a vector subspace of R^{4}.
- Let $\mathbf{w}_{1}=\left[\begin{array}{c}a_{1}-b_{1} \\ a_{1}+c_{1} \\ c_{1}+b_{1} \\ a_{1}-c_{1}\end{array}\right]$ and $\mathbf{w}_{2}=\left[\begin{array}{c}a_{2}-b_{2} \\ a_{2}+c_{2} \\ c_{2}+b_{2} \\ a_{2}-c_{2}\end{array}\right]$ be two elements of W.

$$
\mathbf{w}_{1} \oplus \mathbf{w}_{2}=\left[\begin{array}{l}
\left(a_{1}-b_{1}\right)+\left(a_{2}-b_{2}\right) \\
\left(a_{1}+c_{1}\right)+\left(a_{2}+c_{2}\right) \\
\left(c_{1}+b_{1}\right)+\left(c_{2}+b_{2}\right) \\
\left(a_{1}-c_{1}\right)+\left(a_{2}-c_{2}\right)
\end{array}\right]=\left[\begin{array}{l}
\left(a_{1}+a_{2}\right)-\left(b_{1}+b_{2}\right) \\
\left(a_{1}+a_{2}\right)+\left(c_{1}+c_{2}\right) \\
\left(c_{1}+c_{2}\right)+\left(b_{1}+b_{2}\right) \\
\left(a_{1}+a_{2}\right)-\left(c_{1}+c_{2}\right)
\end{array}\right]
$$

which is also in W. Hence W is closed under \oplus.

- Let r be a real number. Then

$$
r \odot \mathbf{w}_{1}=\left[\begin{array}{l}
r\left(a_{1}-b_{1}\right) \\
r\left(a_{1}+c_{1}\right) \\
r\left(c_{1}+b_{1}\right) \\
r\left(a_{1}-c_{1}\right)
\end{array}\right]=\left[\begin{array}{l}
\left(r a_{1}\right)-\left(r b_{1}\right) \\
\left(r a_{1}\right)+\left(r c_{1}\right) \\
\left(r c_{1}\right)+\left(r b_{1}\right) \\
\left(r a_{1}\right)-\left(r c_{1}\right)
\end{array}\right]
$$

which is also in W. Hence W is closed under \odot.
This shows that W is a vector subspace of R^{4}.
b) (12 Points) Find a basis for and dimension of W.

Note that for any vector \mathbf{w} in W, we have $\mathbf{w}=\left[\begin{array}{l}a-b \\ a+c \\ c+b \\ a-c\end{array}\right]=a\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right]+b\left[\begin{array}{c}-1 \\ 0 \\ 1 \\ 0\end{array}\right]+$ $c\left[\begin{array}{c}0 \\ 1 \\ 0 \\ -1\end{array}\right]$. Hence $W=\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$. Now, $a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+a_{3} \mathbf{v}_{3}=0 \rightarrow a_{1}-a_{2}=$ $0, a_{1}+a_{3}=0, a_{3}+a_{2}=0, a_{1}-a_{3}=0 \Rightarrow a_{1}=a_{2}=a_{3}=0$. This means that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ are linearly independent. Hence, a basis for W is given by

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right]\right\}
$$

This implies that $\operatorname{dim}(W)=3$.
ii) Let

$$
A=\left[\begin{array}{ccc}
3 & -1 & 2 \\
4 & 5 & 6 \\
7 & 1 & 2
\end{array}\right]
$$

a) (10 Points) Find $\operatorname{Adj}(A)$.

We have to calculate the cofactors.

$$
\begin{aligned}
& A_{11}=(-1)^{1+1} \operatorname{det}\left(\left[\begin{array}{ll}
5 & 6 \\
1 & 2
\end{array}\right]\right)=4, \quad A_{12}=(-1)^{1+2} \operatorname{det}\left(\left[\begin{array}{ll}
4 & 6 \\
7 & 2
\end{array}\right]\right)=34, \\
& A_{13}=(-1)^{1+3} \operatorname{det}\left(\left[\begin{array}{ll}
4 & 5 \\
7 & 1
\end{array}\right]\right)=-31, \quad A_{21}=(-1)^{2+1} \operatorname{det}\left(\left[\begin{array}{cc}
-1 & 2 \\
1 & 2
\end{array}\right]\right)=4 \\
& A_{22}=(-1)^{2+2} \operatorname{det}\left(\left[\begin{array}{ll}
3 & 2 \\
7 & 2
\end{array}\right]\right)=-8, \quad A_{23}=(-1)^{2+3} \operatorname{det}\left(\left[\begin{array}{cc}
3 & -1 \\
7 & 1
\end{array}\right]\right)=-10 \\
& A_{31}=(-1)^{3+1} \operatorname{det}\left(\left[\begin{array}{cc}
-1 & 2 \\
5 & 6
\end{array}\right]\right)=-16, \quad A_{32}=(-1)^{3+2} \operatorname{det}\left(\left[\begin{array}{ll}
3 & 2 \\
4 & 6
\end{array}\right]\right)=-10, \\
& A_{33}=(-1)^{3+3} \operatorname{det}\left(\left[\begin{array}{ll}
3 & -1 \\
4 & 5
\end{array}\right]\right)=19 .
\end{aligned}
$$

Hence the adjoint of A is given by

$$
\operatorname{Adj}(A)=\left[\begin{array}{lll}
A_{11} & A_{21} & A_{31} \\
A_{12} & A_{22} & A_{32} \\
A_{13} & A_{23} & A_{33}
\end{array}\right]=\left[\begin{array}{ccc}
4 & 4 & -16 \\
34 & -8 & -10 \\
-31 & -10 & 19
\end{array}\right]
$$

b) (10 Points) Find $\operatorname{det}(A)$ by expanding along the second column.

Expanding along the second column we get

$$
\begin{aligned}
\operatorname{det}(A) & =a_{12} A_{12}+a_{22} A_{22}+a_{32} A_{32} \\
& =(-1)(34)+(5)(-8)+(1)(-10) \\
& =-34-40-10 \\
& =-84
\end{aligned}
$$

c) (10 Points) Find A^{-1}, if it exists. (Hint : If you want, you can use parts (a) and (b) above to avoid lengthy calculations)

From part (b) on the previous page $\operatorname{det}(A)=-84 \neq 0$. This implies that A^{-1} exists. We have

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{Adj}(A)=\frac{-1}{84}\left[\begin{array}{ccc}
4 & 4 & -16 \\
34 & -8 & -10 \\
-31 & -10 & 19
\end{array}\right]
$$

d) (10 Points) Find all solutions to the linear system $A \mathbf{x}=\mathbf{b}$, where $\mathbf{b}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$

Since A is invertible, the above linear system has only one solution given by

$$
\mathbf{x}=A^{-1} \mathbf{b}=\frac{-1}{84}\left[\begin{array}{ccc}
4 & 4 & -16 \\
34 & -8 & -10 \\
-31 & -10 & 19
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 / 7 \\
-2 / 7 \\
1 / 7
\end{array}\right]
$$

iii) Let

$$
A=\left[\begin{array}{ccccc}
1 & 1 & 4 & 1 & 2 \\
0 & 1 & 2 & 1 & 1 \\
0 & 0 & 0 & 1 & 2 \\
1 & -1 & 0 & 0 & 2 \\
2 & 1 & 6 & 0 & 1
\end{array}\right]
$$

a) (15 Points) Find a basis for the Row space of A.

We know that the basis for the row space for the matrix A consists of the non-zero rows in the row echelon form of the matrix.

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
1 & 1 & 4 & 1 & 2 \\
0 & 1 & 2 & 1 & 1 \\
0 & 0 & 0 & 1 & 2 \\
1 & -1 & 0 & 0 & 2 \\
2 & 1 & 6 & 0 & 1
\end{array}\right] \xrightarrow[\substack{-\mathbf{r}_{1}+\mathbf{r}_{4} \rightarrow \mathbf{r}_{4} \\
-2 \mathbf{r}_{1}+\mathbf{r}_{5} \rightarrow \mathbf{r}_{5}}]{ }\left[\begin{array}{ccccc}
1 & 1 & 4 & 1 & 2 \\
0 & 1 & 2 & 1 & 1 \\
0 & 0 & 0 & 1 & 2 \\
0 & -2 & -4 & -1 & 0 \\
0 & -1 & -2 & -2 & -3
\end{array}\right]} \\
& \underset{\substack{2 \mathbf{r}_{2}+\mathbf{r}_{4} \rightarrow \mathbf{r}_{4} \\
\mathbf{r}_{2}+\mathbf{r}_{5} \rightarrow \mathbf{r}_{5}}}{ }\left[\begin{array}{ccccc}
1 & 1 & 4 & 1 & 2 \\
0 & 1 & 2 & 1 & 1 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & -1 & -2
\end{array}\right] \underset{\substack{-\mathbf{r}_{3}+\mathbf{r}_{4} \rightarrow \mathbf{r}_{4} \\
\mathbf{r}_{3}+\mathbf{r}_{5} \rightarrow \mathbf{r}_{5}}}{ }\left[\begin{array}{lllll}
1 & 1 & 4 & 1 & 2 \\
0 & 1 & 2 & 1 & 1 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Hence, we get that basis for the row space of A is given by

$$
\left\{\left[\begin{array}{lllll}
1 & 1 & 4 & 1 & 2
\end{array}\right],\left[\begin{array}{lllll}
0 & 1 & 2 & 1 & 1
\end{array}\right],\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & 2
\end{array}\right]\right\} .
$$

b) (5 Points) Find $\operatorname{Rank}(A)$ and $\operatorname{Nullity}(A)$.

We know that

$$
\operatorname{Rank}(A)=\operatorname{RowRank}(A)=\operatorname{dim}(\text { Rowspaceof } A)=3 .
$$

To get Nullity we use the following formula

$$
\operatorname{Rank}(A)+\operatorname{Nullity}(A)=5 \Rightarrow \operatorname{Nullity}(A)=5-\operatorname{Rank}(A)=5-3=2
$$

iv) State whether the following statements are true or false. Explain your answers.
a) (6 Points) Let $V=R_{2}$ and W be the subset of R_{2} consisting of all vectors of the form $\left[\begin{array}{ll}x & 2 x^{2}\end{array}\right]$, where x is any real number. Then W is a vector subspace of V.

FALSE

If $\left(x_{1}, 2 x_{1}^{2}\right)$ and $\left(x_{2}, 2 x_{2}^{2}\right)$ are two elements of W, then $\left(x_{1}, 2 x_{1}^{2}\right)+\left(x_{2}, 2 x_{2}^{2}\right)=$ $\left(x_{1}+x_{2}, 2\left(x_{1}^{2}+x_{2}^{2}\right)\right)$. This element does not belong to W because, in general, $\left(x_{1}+x_{2}\right)^{2} \neq x_{1}^{2}+x_{2}^{2}$. Hence, W is NOT a vector subspace of R_{2}.
b) (8 Points) Let A be a $n \times n$ matrix such that $A^{T} A$ is non-singular. Then $\operatorname{Rank}(A)=n$.

TRUE

Since $A^{T} A$ is non-singular, we have $\operatorname{det}\left(A^{T} A\right) \neq 0$. Since $\operatorname{det}\left(A^{T} A\right)=\operatorname{det}\left(A^{T}\right) \operatorname{det}(A)$, we get that $\operatorname{det}(A) \neq 0$. This means that A is also non-singular. We know that if A is a $n \times n$ matrix then A is non-singular if and only if $\operatorname{Rank}(A)=n$. Hence, we can conclude that $\operatorname{Rank}(A)=n$.
c) $(6$ Points $) \operatorname{det}\left(\left[\begin{array}{cc}a+b & a b \\ 1 & a+b\end{array}\right]\right)=\left(a^{3}-b^{3}\right) /(a-b)$.

TRUE

$$
\begin{aligned}
\operatorname{det}\left(\left[\begin{array}{cc}
a+b & a b \\
1 & a+b
\end{array}\right]\right) & =(a+b)(a+b)-a b=\left(a^{2}+2 a b+b^{2}\right)-a b=a^{2}+a b+b^{2} \\
& =\frac{\left(a^{2}+a b+b^{2}\right)(a-b)}{(a-b)}=\frac{a^{3}-b^{3}}{a-b} .
\end{aligned}
$$

