# MATH 3333 

Final
May 8, 2008

## Name:

I.D. no. :

- Calculators are not allowed. The problems are set so that you should not need calculators at all.
- Show as much work as possible. Answers without explanation will not receive any credit.
- If you preform any row or column operations in a problem, record them using standard notations.
- Best of Luck.
i) Let $L: M_{22} \rightarrow M_{22}$ be the function given by

$$
L(A)=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] A-A^{T}\left[\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right]
$$

a) (10 Points) Show that $L$ is a linear transformation.
b) (10 Points) Which of the following matrices are in $\operatorname{Ker}(L)$ ? Explain.

$$
A_{1}=\left[\begin{array}{ll}
1 & 4 \\
1 & 1
\end{array}\right] \quad A_{2}=\left[\begin{array}{ll}
1 & 3 \\
1 & 2
\end{array}\right] .
$$

c) (5 Points) Is $L$ one-to-one ? Explain.
ii) (25 Points) Let $S$ be the standard basis for $R^{3}$ and $T=\left\{\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-5 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right]\right\}$ be another basis for $R^{3}$. Consider the linear transformation $L: R^{3} \rightarrow R^{3}$ given by

$$
L\left(\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]\right)=\left[\begin{array}{l}
u_{1}+u_{2} \\
u_{2}+u_{3} \\
u_{3}+u_{1}
\end{array}\right]
$$

Find the matrix representing $L$ with respect to the ordered basis $S$ and $T$.
iii) Let

$$
A=\left[\begin{array}{ccc}
0 & -4 & 2 \\
2 & 6 & -2 \\
0 & 0 & 2
\end{array}\right]
$$

a) (20 Points) Find the characteristic polynomial, eigenvalues and eigenvectors of $A$.
b) (5 Points) State whether $A$ is diagonalizable. Explain. (Do not calculate the matrix $P$ and its inverse)
iv) (20 Points) Find a basis for $R^{3}$ that includes the vectors $\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]\right\}$.
v) (20 Points) Let

$$
A=\left[\begin{array}{cccc}
1 & -2 & -3 & 4 \\
4 & -3 & -7 & 6 \\
2 & 1 & -1 & -2
\end{array}\right]
$$

Find a basis for the null space of $A$.
vi) (20 Points) Let

$$
A=\left[\begin{array}{cccc}
1 & 2 & 0 & 5 \\
3 & 4 & 1 & 7 \\
-2 & 5 & 2 & 0 \\
0 & 1 & 2 & -7
\end{array}\right]
$$

Find $\operatorname{det}(A)$.
vii) Let $P=\left[\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & -1\end{array}\right]$.
a) $(15$ Points $)$ Find $P^{-1}$
b) (10 Points) Let $D=\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0\end{array}\right]$ and $A=P D P^{-1}=\left[\begin{array}{ccc}1 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 1\end{array}\right]$. Find $A^{9}$. $\left(\right.$ You may need $\left.2^{9}=512\right)$
viii) State whether the following statements are True or False. Explain your answer.
a) (10 Points) Let $A, B, C, D$ be $2 \times 2$ invertible matrices. Then

$$
\left(\left(A B^{T} C^{-1} D\right)^{T}\right)^{-1}=\left(A^{T}\right)^{-1} B^{-1} C^{T}\left(D^{T}\right)^{-1}
$$

b) (10 Points) Let $A=\left[\begin{array}{cc}\cos (20) & -\sin (20) \\ \sin (20) & \cos (20)\end{array}\right]$. Then $A^{15} \mathbf{u}=\mathbf{u}$ for all $\mathbf{u}$ in $R^{2}$.
ix) (20 Points) A $n \times n$ matrix $A$ is called an orthogonal matrix if it satisfies $A^{T} A=I_{n}$. State which of the following matrices are orthogonal.

$$
A_{1}=\left[\begin{array}{cc}
\cos (\theta)-\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right] \quad A_{2}=\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & -1
\end{array}\right]
$$

