MATH 3333
 Midterm II
 November 14, 2008

Name:

I.D. no.:

- Calculators are not allowed. The problems are set so that you should not need calculators at all.
- Show as much work as possible. Answers without explanation will not receive any credit.
- If you preform any row or column operations in a problem, record them using standard notations.
- Best of Luck.
i) Let $L: R_{3} \rightarrow R_{4}$ be defined by

$$
L\left(\left[\begin{array}{lll}
u_{1} & u_{2} & u_{3}
\end{array}\right]\right)=\left[\begin{array}{llll}
u_{1}-u_{3} & u_{2}+2 u_{1} & -u_{3} & u_{1}+u_{3}
\end{array}\right]
$$

a) (10 Points) Show that L is a linear transformation.
b) (10 Points) Find a basis for and dimension of the Kernel of L.
c) (10 Points) Find a basis for and dimension of the Range of L.
d) (15 Points) Let $S=\left\{\left[\begin{array}{lll}1 & 0 & 1\end{array}\right],\left[\begin{array}{lll}2 & 1 & 0\end{array}\right],\left[\begin{array}{lll}0 & -1 & 1\end{array}\right]\right\}$ be a basis for R_{3} and T be the natural basis for R_{4}. Find the matrix representing L with respect to the ordered basis S and T.
ii) Let $V=M_{22}$. Let W be the subset of V consisting of matrices of the form $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ such that $a+d=0$.
a) (10 Points) Show that W is a subspace of V.
b) (15 Points) Find a basis for and dimension of W.
iii) (15 Points) Let V be the set of all odd integers. Define the operations \oplus and \odot as follows:

$$
\mathbf{u} \oplus \mathbf{v}=\mathbf{u v}(\text { usual multiplication) and } c \odot \mathbf{u}=\mathbf{u}
$$

Is V a vector space ? If Yes, then show that all the properties are satisfied. If No, then list all the properties that are not satisfied.
iv) (15 Points) Let

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1 \\
2 & 1 & 3
\end{array}\right]
$$

Is $\operatorname{Rank}(A)=3$? Explain your answer. Also, find $\operatorname{Nullity}(A)$.

