MATH 3333

Midterm II November 14,2008

Name :

I.D. no. :

- Calculators are not allowed. The problems are set so that you should not need calculators at all.
- Show as much work as possible. Answers without explanation will not receive any credit.
- If you preform any row or column operations in a problem, record them using standard notations.
- Best of Luck.

i) Let $L: R_3 \to R_4$ be defined by

$$L(\begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix}) = \begin{bmatrix} u_1 - u_3 & u_2 + 2u_1 & -u_3 & u_1 + u_3 \end{bmatrix}$$

a) (10 Points) Show that L is a linear transformation.

b) (10 Points) Find a basis for and dimension of the Kernel of L.

c) (10 Points) Find a basis for and dimension of the Range of L.

d) (15 Points) Let $S = \{ \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -1 & 1 \end{bmatrix} \}$ be a basis for R_3 and T be the natural basis for R_4 . Find the matrix representing L with respect to the ordered basis S and T.

- ii) Let $V = M_{22}$. Let W be the subset of V consisting of matrices of the form $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ such that a + d = 0.
 - a) (10 Points) Show that W is a subspace of V.

b) (15 Points) Find a basis for and dimension of W.

iii) (15 Points) Let V be the set of all odd integers. Define the operations \oplus and \odot as follows:

 $\mathbf{u} \oplus \mathbf{v} = \mathbf{u} \mathbf{v} ($ usual multiplication) and $c \odot \mathbf{u} = \mathbf{u}$

Is V a vector space ? If Yes, then show that **all** the properties are satisfied. If No, then list **all** the properties that are not satisfied.

iv) (15 Points) Let

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 2 & 1 & 3 \end{bmatrix}$$

Is $\operatorname{Rank}(A) = 3$? Explain your answer. Also, find $\operatorname{Nullity}(A)$.