MATH 3333
 Midterm I
 October 3, 2008

Name:

I.D. no. :

- Calculators are not allowed. The problems are set so that you should not need calculators at all.
- Show as much work as possible. Answers without explanation will not receive any credit.
- If you preform any row or column operations in a problem, record them using standard notations.
- Best of Luck.
i) (20 Points) Find all the values of a for which the resulting linear system has (a) no solution, (b) a unique solution and (c) infinitely many solutions.

$$
\begin{aligned}
x+2 y-3 z & =3 \\
x+3 y+z & =1 \\
x+2 y+\left(a^{2}-7\right) z & =a+1
\end{aligned}
$$

ii) (20 Points) Find all 3×1 matrices \mathbf{x} such that

$$
A \mathbf{x}=2 \mathbf{x}, \quad \text { where } A=\left[\begin{array}{ccc}
2 & 2 & 0 \\
1 & -1 & 1 \\
1 & 0 & 3
\end{array}\right]
$$

iii) a) (5 Points) Determine whether the following permutations of $S=\{1,2,3,4,5,6\}$ are even or odd. Explain why.
(a) 624513
(b) 536214
b) (10 Points) Let A be a $n \times n$ skew-symmetric matrix. Show that for any even integer k, the matrix A^{k} is symmetric.
c) (5 Points)

If $\operatorname{det}\left(\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right]\right.$, then find $\operatorname{det}\left(\left[\begin{array}{ccc}a_{1} & a_{2} & a_{3} \\ 2 b_{1} & 2 b_{2} & 2 b_{3} \\ c_{1}-a_{1} & c_{2}-a_{2} & c_{3}-a_{3}\end{array}\right]\right.$)
iv) (20 Points) Let

$$
A=\left[\begin{array}{cccc}
2 & 3 & -1 & 0 \\
-3 & 0 & 5 & 1 \\
1 & 1 & -4 & 2 \\
0 & 2 & 4 & -1
\end{array}\right]
$$

a) Find $\operatorname{Adj}(A)$. (Use the fact that $A_{11}=37, A_{12}=17, A_{14}=-41, A_{21}=-21, A_{22}=$ $-9, A_{24}=21, A_{31}=17, A_{32}=7, A_{33}=-13, A_{34}=-19, A_{42}=10, A_{43}=$ $\left.-22, A_{44}=-28\right)$
b) Find $\operatorname{det}(A)$
c) Find A^{-1}, if it exists.
v) (20 Points) Find A^{-1}, if it exists, for

$$
A=\left[\begin{array}{ccc}
2 & 2 & 0 \\
1 & -1 & 1 \\
1 & 0 & 3
\end{array}\right]
$$

