i) (10 Points) Find the solution \mathbf{x} of the linear system

$$
\begin{aligned}
&\left(A B^{-1} C^{T}\right) \mathbf{x}=\mathbf{b} \quad \text { where } \quad A^{-1}=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right], \quad B=\left[\begin{array}{cc}
-3 & 1 \\
5 & 2
\end{array}\right], \quad C^{-1}=\left[\begin{array}{ll}
1 & 0 \\
1 & 5
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
&\left(A B^{-1} C^{T}\right) \mathbf{x}=\mathbf{b} \Rightarrow \mathbf{x}=\left(A B^{-1} C^{T}\right)^{-1} \mathbf{b}=\left(C^{-1}\right)^{T} B A^{-1} \mathbf{b} \\
&=\left[\begin{array}{ll}
1 & 1 \\
0 & 5
\end{array}\right]\left[\begin{array}{cc}
-3 & 1 \\
5 & 2
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{cc}
2 & 3 \\
25 & 10
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
&=\left[\begin{array}{cc}
7 & 5 \\
60 & 35
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
12 \\
95
\end{array}\right]
\end{aligned}
$$

ii) (10 Points) Let $A=\left[\begin{array}{ccc}2 & 1 & 3 \\ 7 & -1 & 5 \\ 0 & 4 & 1\end{array}\right]$. Write A as $A=S+K$, where S is a symmetric matrix and K is a skew-symmetric matrix.

We have $S=\frac{1}{2}\left(A+A^{T}\right)$ and $K=\frac{1}{2}\left(A-A^{T}\right)$. This implies that

$$
S=\left[\begin{array}{ccc}
2 & 4 & 3 / 2 \\
4 & -1 & 9 / 2 \\
3 / 2 & 9 / 2 & 1
\end{array}\right] \quad K=\left[\begin{array}{ccc}
0 & -3 & 3 / 2 \\
3 & 0 & 1 / 2 \\
-3 / 2 & -1 / 2 & 0
\end{array}\right]
$$

iii) (5 Points) State which of the following matrices are in row echelon form.

$$
A=\left[\begin{array}{ccccc}
0 & 0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \quad B=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & 1 & 2 & 3 \\
0 & 1 & 3 & 4 \\
0 & 0 & 0 & 0
\end{array}\right] \quad C=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

$$
\begin{array}{rll}
A \text { and } C & : & \text { row echelon matrix } \\
B & : & \text { not row echelon matrix }
\end{array}
$$

