Name :

1. Find the dimension of the subspace of M_{23} consisting of all matrices of the form $\left(\begin{array}{lll}a & b & c \\ d & e & f\end{array}\right)$ with $c=2 a+b, d=b-3 f$ and $e=a-2 b+f$.

$$
\begin{aligned}
\left(\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right) & =\left(\begin{array}{ccc}
a & b & 2 a+b \\
b-3 f & a-2 b+f & f
\end{array}\right) \\
& =a\left(\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 0
\end{array}\right)+b\left(\begin{array}{ccc}
0 & 1 & 1 \\
1 & -2 & 0
\end{array}\right)+f\left(\begin{array}{ccc}
0 & 0 & 0 \\
-3 & 1 & 1
\end{array}\right)
\end{aligned}
$$

This implies that the subspace $W=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$, where $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are the three vectors above. To check for linear independence, we have $a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+a_{3} \mathbf{v}_{3}=0 \Rightarrow\left(\begin{array}{ccc}a_{1} & a_{2} & 2 a_{1}+a_{2} \\ a_{2}-3 a_{3} & a_{1}-2 a_{2}+a_{3} & a_{3}\end{array}\right)=\mathbf{0} \Rightarrow a_{1}=a_{2}=a_{3}=0$

Hence, $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ forms a basis for W, which implies that $\operatorname{dim}(W)=3$.
2. Find the dimension of the subspace of M_{22} consisting of all skew-symmetric matrices.

Any skew-symmetric matrix in M_{22} has the form $\mathbf{v}=\left(\begin{array}{cc}0 & a \\ -a & 0\end{array}\right)$. Since

$$
\mathbf{v}=\left(\begin{array}{cc}
0 & a \\
-a & 0
\end{array}\right)=a\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

we have that $\left\{\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)\right\}$ forms a basis for skew-symmetric matrices in M_{22}. (You do not have to check for linear independence because a set of just one vector is always linearly independent). Hence

$$
\operatorname{dim}=1
$$

