Name :

i) (15 Points) Let W be the subspace of M_{22} of all matrices of the form $\left[\begin{array}{ll}a & 2 a \\ c & d\end{array}\right]$. Is $S=\left\{\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}1 & 2 \\ 0 & 0\end{array}\right]\right\}$ a basis for W ? Explain your answer.

We have to check two things :
a) Span : $a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+a_{3} \mathbf{v}_{3}=\mathbf{v}$ gives us

$$
\left[\begin{array}{cc}
a_{3} & 2 a_{3} \\
a_{2} & a_{1}
\end{array}\right]=\left[\begin{array}{cc}
a & 2 a \\
c & d
\end{array}\right]
$$

Hence we get $a_{1}=d, a_{2}=c, a_{3}=a$ and $\operatorname{Span}(S)=W$.
b) Linear Independence : $a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+a_{3} \mathbf{v}_{3}=0$ gives us

$$
\left[\begin{array}{cc}
a_{3} & 2 a_{3} \\
a_{2} & a_{1}
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] .
$$

Hence we get $a_{1}=a_{2}=a_{3}=0$ which implies that S is linearly independent. This tells us that, indeed, S is a basis for W.
ii) (5 Points) Write down a basis for $V=M_{23}$. No proof required, just write down the basis vectors.

$$
\left\{\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\right\}
$$

