Name :

1. (5 Points) Show that if A is a $n \times n$ matrix then $\operatorname{det}\left(A A^{T}\right) \geq 0$.

$$
\operatorname{det}\left(A A^{T}\right)=\operatorname{det}(A) \operatorname{det}\left(A^{T}\right)=\operatorname{det}(A) \operatorname{det}(A)=\operatorname{det}(A)^{2} \geq 0 .
$$

We have used the fact that $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$ and the square of any real number is non-negative.
2. (10 Points) Use Cramer's rule to solve the following linear system

$$
2 x_{1}+3 x_{2}+4 x_{3}=2, x_{1}+2 x_{2}+4 x_{3}=0,4 x_{1}+3 x_{2}+x_{3}=0 .
$$

We have $A \mathbf{x}=\mathbf{b}$ with $A=\left(\begin{array}{lll}2 & 3 & 4 \\ 1 & 2 & 4 \\ 4 & 3 & 1\end{array}\right)$ and $\mathbf{b}=\left(\begin{array}{l}2 \\ 0 \\ 0\end{array}\right)$.

$$
\begin{aligned}
& \operatorname{det}(A)=5, \quad \operatorname{det}\left(A_{1}\right)=\operatorname{det}\left(\left(\begin{array}{lll}
2 & 3 & 4 \\
0 & 2 & 4 \\
0 & 3 & 1
\end{array}\right)\right)=-20, \\
& \operatorname{det}\left(A_{2}\right)=\operatorname{det}\left(\left(\begin{array}{lll}
2 & 2 & 4 \\
1 & 0 & 4 \\
4 & 0 & 1
\end{array}\right)\right)=30, \quad \operatorname{det}\left(A_{3}\right)=\operatorname{det}\left(\left(\begin{array}{lll}
2 & 3 & 2 \\
1 & 2 & 0 \\
4 & 3 & 0
\end{array}\right)\right)=-10 .
\end{aligned}
$$

By Cramer's rule, we have

$$
x_{1}=\frac{\operatorname{det}\left(A_{1}\right)}{\operatorname{det}(A)}=-4, \quad x_{2}=\frac{\operatorname{det}\left(A_{2}\right)}{\operatorname{det}(A)}=6, \quad x_{3}=\frac{\operatorname{det}\left(A_{3}\right)}{\operatorname{det}(A)}=-2 .
$$

3. (5 Points) Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be three vectors in a vector space V. Show that if $\mathbf{u} \oplus \mathbf{v}=\mathbf{u} \oplus \mathbf{w}$ then we must have $\mathbf{v}=\mathbf{w}$. Show all steps in details specifying which one of the properties $(a), \cdots,(8)$ that you use.
By property (4), there is a vector $-\mathbf{u}$ in V such that $-\mathbf{u} \oplus \mathbf{u}=\mathbf{0}$. Hence

$$
\mathbf{u} \oplus \mathbf{v}=\mathbf{u} \oplus \mathbf{w} \Rightarrow-\mathbf{u} \oplus(\mathbf{u} \oplus \mathbf{v})=-\mathbf{u} \oplus(\mathbf{u} \oplus \mathbf{w})
$$

Using property (2), we then have

$$
(-\mathbf{u} \oplus \mathbf{u}) \oplus \mathbf{v}=(-\mathbf{u} \oplus \mathbf{u}) \oplus \mathbf{w} .
$$

Using property (4) we have

$$
\mathbf{0} \oplus \mathbf{v}=\mathbf{0} \oplus \mathbf{w}
$$

and finally, using property (3), we get

$$
\mathbf{u}=\mathbf{w}
$$

as required.

