Name :

1. (7 Points) If A is a non-singular matrix such that $A^{2}=A$, then what is $\operatorname{det}(A)$?

Solutions 1

$$
\begin{aligned}
& A^{2}=A \Rightarrow \operatorname{det}\left(A^{2}\right)=\operatorname{det}(A) \Rightarrow \operatorname{det}(A) \cdot \operatorname{det}(A)=\operatorname{det}(A) \\
& \Rightarrow \operatorname{det}(A)(\operatorname{det}(A)-1)=0 \Rightarrow \operatorname{det}(A)=0 \text { or } 1 .
\end{aligned}
$$

But A is non-singular and hence $\operatorname{det}(A) \neq 0$. So $\operatorname{det}(A)=1$.
Solution 2 Since A is non-singular we know that A^{-1} exists. So,

$$
A^{2}=A \Rightarrow A^{-1} A^{2}=A^{-1} A \Rightarrow A=I_{n} \Rightarrow \operatorname{det}(A)=1
$$

2. (7 Points) Find all values of t such that $\operatorname{det}\left(\left(\begin{array}{ccc}t-4 & 0 & 2 \\ 3 & t & -5 \\ 0 & 0 & t+3\end{array}\right)\right)=0$.

The determinant of the above matrix is $(t-4) t(t+3)$. Hence the values of t for which the determinant is zero are $t=4,0,-3$.
3. (6 Points) State which of the following permutations of $S=\{1,2,3,4,5,6,7\}$ are even and which are odd. Explain.
(a) 2453671
(b) 5237614
(c) 6214357

2453671 is an even permutation since there are 8 inversions. 5237614 is an odd permutation since there are 11 inversions. 6214357 is an odd permutation since there are 7 inversions.

