Name :

1. (8 Points) Let $A=\left[\begin{array}{ccc}2 & 1 & 0 \\ 5 & 4 & -6 \\ -4 & 8 & 0\end{array}\right]$. Find a symmetric matrix B and a skew-symmetric matrix C such that $A=B+C$.
For any matrix A we know that $\frac{1}{2}\left(A+A^{T}\right)$ is symmetric and $\frac{1}{2}\left(A-A^{T}\right)$ is skewsymmetric and $A=\frac{1}{2}\left(A+A^{T}\right)+\frac{1}{2}\left(A-A^{T}\right)$. Hence

$$
\begin{aligned}
& B=\frac{1}{2}\left(A+A^{T}\right)=\frac{1}{2}\left(\left[\begin{array}{ccc}
2 & 1 & 0 \\
5 & 4 & -6 \\
-4 & 8 & 0
\end{array}\right]+\left[\begin{array}{ccc}
2 & 5 & -4 \\
1 & 4 & 8 \\
0 & -6 & 0
\end{array}\right]\right)=\left[\begin{array}{ccc}
2 & 3 & -2 \\
3 & 4 & 1 \\
-2 & 1 & 0
\end{array}\right] \\
& C=\frac{1}{2}\left(A-A^{T}\right)=\frac{1}{2}\left(\left[\begin{array}{ccc}
2 & 1 & 0 \\
5 & 4 & -6 \\
-4 & 8 & 0
\end{array}\right]-\left[\begin{array}{ccc}
2 & 5 & -4 \\
1 & 4 & 8 \\
0 & -6 & 0
\end{array}\right]\right)=\left[\begin{array}{ccc}
0 & -2 & 2 \\
2 & 0 & -7 \\
-2 & 7 & 0
\end{array}\right]
\end{aligned}
$$

2. (6 Points) Consider the matrix transformation $f(\mathbf{x})=A \mathbf{x}$ where $A=\left[\begin{array}{ll}0 & 1 \\ 2 & 3 \\ 1 & 1\end{array}\right]$. Determine whether $\mathbf{w}_{1}=\left[\begin{array}{l}1 \\ 5 \\ 2\end{array}\right]$ and $\mathbf{w}_{2}=\left[\begin{array}{l}2 \\ 7 \\ 1\end{array}\right]$ are in the range of $f ?$ Explain your
answer. answer.
Let $\mathbf{u}=\left[\begin{array}{l}x \\ y\end{array}\right]$. Then $f(\mathbf{u})=\left[\begin{array}{ll}0 & 1 \\ 2 & 3 \\ 1 & 1\end{array}\right] \cdot\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}y \\ 2 x+3 y \\ x+y\end{array}\right]$. If $f(\mathbf{u})=\mathbf{w}_{1}$ then we have $\left[\begin{array}{c}y \\ 2 x+3 y \\ x+y\end{array}\right]=\left[\begin{array}{l}1 \\ 5 \\ 2\end{array}\right]$. We can solve this system of linear equations to get a solution $x=$ $1, y=1$. Hence \mathbf{w}_{1} is in the range of f. If $f(\mathbf{u})=\mathbf{w}_{2}$ then we have $\left[\begin{array}{c}y \\ 2 x+3 y \\ x+y\end{array}\right]=\left[\begin{array}{l}2 \\ 7 \\ 1\end{array}\right]$. The first two equations gives us $y=2$ and $x=1 / 2$, but these values of x and y do not satisfy the third equation $x+y=1$. Hence we cannot find a solution to the system of linear equations. So, \mathbf{w}_{2} is not in the range of f.
3. (6 Points) Determine which of the following matrices are in row echelon form or reduced row echelon form or neither.

$$
A=\left[\begin{array}{ccccccc}
1 & 2 & 0 & 0 & 0 & 5 & 6 \\
0 & 0 & 1 & -3 & 0 & 1 & 4 \\
0 & 0 & 0 & 0 & 1 & -7 & 2
\end{array}\right], B=\left[\begin{array}{cccc}
1 & 3 & 0 & 5 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 2
\end{array}\right], C=\left[\begin{array}{lll}
0 & 1 & 3 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

A is in reduced row echelon form, B is neither and C is in row echelon form.

