MATH 3333
 Midterm II
 October 18, 2007

Name:

I.D. no. :

- Calculators are not allowed. The problems are set so that you should not need calculators at all.
- Show as much work as possible. Answers without explanation will not receive any credit.
- Best of Luck.
i) (20 Points) Using the adjoint matrix method, find A^{-1} where

$$
\begin{gathered}
A=\left(\begin{array}{ccc}
2 & 0 & -1 \\
-3 & 5 & 8 \\
0 & -4 & -5
\end{array}\right) \\
A_{11}=(-1)^{1+1} \operatorname{det}\left[\begin{array}{cc}
5 & 8 \\
-4 & -5
\end{array}\right]=7 \quad A_{12}=(-1)^{1+2} \operatorname{det}\left[\begin{array}{cc}
-3 & 8 \\
0 & -5
\end{array}\right]=-15 \\
A_{13}=(-1)^{1+3} \operatorname{det}\left[\begin{array}{cc}
-3 & 5 \\
0 & -4
\end{array}\right]=12 \quad A_{21}=(-1)^{2+1} \operatorname{det}\left[\begin{array}{cc}
0 & -1 \\
-4 & -5
\end{array}\right]=4 \\
A_{22}=(-1)^{2+2} \operatorname{det}\left[\begin{array}{cc}
2 & -1 \\
0 & -5
\end{array}\right]=-10 \quad A_{23}=(-1)^{2+3} \operatorname{det}\left[\begin{array}{cc}
2 & 0 \\
0 & -4
\end{array}\right]=8 \\
A_{31}=(-1)^{3+1} \operatorname{det}\left[\begin{array}{cc}
0 & -1 \\
5 & 8
\end{array}\right]=5 \quad A_{32}=(-1)^{3+2} \operatorname{det}\left[\begin{array}{cc}
2 & -1 \\
-3 & 8
\end{array}\right]=-13 \\
A_{33}=(-1)^{3+3} \operatorname{det}\left[\begin{array}{cc}
2 & 0 \\
-3 & 5
\end{array}\right]=10
\end{gathered}
$$

Hence we get

$$
\operatorname{Adj}(A)=\left(\begin{array}{lll}
A_{11} & A_{21} & A_{31} \\
A_{12} & A_{22} & A_{32} \\
A_{13} & A_{23} & A_{33}
\end{array}\right)=\left(\begin{array}{ccc}
7 & 4 & 5 \\
-15 & -10 & -13 \\
12 & 8 & 10
\end{array}\right)
$$

To obtain determinant of A we expand along the first row to get

$$
\operatorname{det}(A)=a_{11} A_{11}+a_{12} A_{12}+a_{13} A_{13}=2
$$

Finally, the formula $A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{Adj}(A)$ gives us

$$
A^{-1}=\left(\begin{array}{ccc}
7 / 2 & 2 & 5 / 2 \\
-15 / 2 & -5 & -13 / 2 \\
6 & 4 & 5
\end{array}\right)
$$

ii) (20 Points)
a) Let $\mathbf{v}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 3\end{array}\right)$ and $\mathbf{v}_{2}=\left(\begin{array}{c}2 \\ -1 \\ 2\end{array}\right)$. Determine whether $\mathbf{v}=\left(\begin{array}{c}6 \\ -2 \\ 10\end{array}\right)$ and $\mathbf{w}=\left(\begin{array}{c}-2 \\ 3 \\ 1\end{array}\right)$ are in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$.
$a \mathbf{v}_{1}+b \mathbf{v}_{2}=\mathbf{v}$ gives us the system of linear equations

$$
a+2 b=6,-b=-2,3 a+2 b=10 \Rightarrow a=2, b=-2 \Rightarrow \mathbf{v} \text { is in } \operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\} .
$$

$a \mathbf{v}_{1}+b \mathbf{v}_{2}=\mathbf{w}$ gives us the system of linear equations

$$
a+2 b=-2,-b=3,3 a+2 b=1
$$

The first two equations imply that $a=4, b=-3$ but these values do not satisfy the third equation. Hence \mathbf{w} does not lie in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$.
b) Let A, B, C be three $n \times n$ matrices such that $A B=A C$. Prove that if $\operatorname{det}(A) \neq 0$ then $B=C$.
$\operatorname{det}(A) \neq 0$ implies that A^{-1} exists. Multiply both sides of $A B=A C$ with A^{-1} to get

$$
A^{-1}(A B)=A^{-1}(A C) \Rightarrow B=C
$$

as required.

iii) (20 Points)

a) Show that the set $S=\left\{t^{2}+1,2 t, t+2\right\}$ spans the vector space P_{2} of all polynomials of degree less than or equal to 2 .

Let $a t^{2}+b t+c$ be a vector in P_{2}. We have to find constants a_{1}, a_{2}, a_{3} such that

$$
a_{1}\left(t^{2}+1\right)+b_{1}(2 t)+a_{3}(t+2)=a t^{2}+b t+c
$$

This gives us the system of linear equations

$$
a_{1}=a, 2 a_{2}+a_{3}=b, a_{1}+2 a_{3}=c \Rightarrow a_{1}=a, a_{2}=\frac{a+2 b-c}{4}, a_{3}=\frac{c-a}{2}
$$

This implies that any vector in P_{2} lies in the span of S, hence $\operatorname{Span}(S)=P_{2}$.
b) Let A be a 2×2 matrix such that $A^{3}=3 A$. Show that either A is singular or $\operatorname{det}(A)= \pm 3$.

Taking Determinant of both sides of the equation we get

$$
\begin{aligned}
& \operatorname{det}\left(A^{3}\right)=\operatorname{det}(3 A) \Rightarrow \operatorname{det}(A)^{3}=\operatorname{det}\left(3 I_{2}\right) \operatorname{det}(A) \Rightarrow \operatorname{det}(A)^{3}=9 \operatorname{det}(A) \\
& \Rightarrow \operatorname{det}(A)^{3}-9 \operatorname{det}(A)=0 \Rightarrow \operatorname{det}(A)\left(\operatorname{det}(A)^{2}-9\right)=0 \\
& \Rightarrow \operatorname{det}(A)=0 \text { or } \operatorname{det}(A)^{2}=9 \Rightarrow A \text { is singular or } \operatorname{det}(A)= \pm 3 .
\end{aligned}
$$

iv) (20 Points)
a) Fix a $n \times n$ matrix A. Let W be the subset of the vector space $V=M_{n n}$ consisting of all matrices B that satisfy $A B=B A$. Is W a vector subspace of $M_{n n}$? Explain your answer.

Let B_{1} and B_{2} be two vectors in W. Hence we have $A B_{1}=B_{1} A$ and $A B_{2}=B_{2} A$. We have to check two conditions.
i. Closure under matrix multiplication :

$$
A\left(B_{1}+B_{2}\right)=A B_{1}+A B_{2}=B_{1} A+B_{2} A=\left(B_{1}+B_{2}\right) A
$$

This implies that $B_{1}+B_{2}$ also lies in W.
ii. Closure under scalar multiplication : Let c be a real number. Then

$$
A\left(c B_{1}\right)=c\left(A B_{1}\right)=c\left(B_{1} A\right)=\left(c B_{1}\right) A
$$

This implies that $c B_{1}$ also lies in W.
Hence we can conclude that W is a vector subspace of $M_{n n}$.
b) Let V be the set of all positive real numbers. Define the operator \oplus by $\mathbf{u} \oplus \mathbf{v}:=$ $\mathbf{u v}-1$ and the operator \odot by $c \odot \mathbf{u}:=\mathbf{u}$. Is V a vector space? Explain your answer.

Consider $\mathbf{u}=1 / 2$ and $\mathbf{v}=1 / 2$. Both \mathbf{u}, \mathbf{v} lie in V. But $\mathbf{u} \oplus \mathbf{v}=(1 / 2)(1 / 2)-1=$ $-3 / 4$. Hence $\mathbf{u} \oplus \mathbf{v}$ does not lie in V. This implies that V is not closed under \oplus and hence V is not a vector space.
v) (20 Points) Let

$$
A_{2}=\left[\begin{array}{ll}
x & 1 \\
1 & x
\end{array}\right], A_{3}=\left[\begin{array}{ccc}
x & 1 & 0 \\
1 & x & 1 \\
0 & 1 & x
\end{array}\right], A_{4}=\left[\begin{array}{cccc}
x & 1 & 0 & 0 \\
1 & x & 1 & 0 \\
0 & 1 & x & 1 \\
0 & 0 & 1 & x
\end{array}\right]
$$

Show that

$$
\operatorname{det}\left(A_{4}\right)=x \operatorname{det}\left(A_{3}\right)-\operatorname{det}\left(A_{2}\right)
$$

Expanding $\operatorname{det}\left(A_{4}\right)$ along the first row, we get

$$
\begin{aligned}
\operatorname{det}\left(A_{4}\right) & =x \operatorname{det}\left(\left[\begin{array}{ccc}
x & 1 & 0 \\
1 & x & 1 \\
0 & 1 & x
\end{array}\right]\right)-1 \operatorname{det}\left(\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & x & 1 \\
0 & 1 & x
\end{array}\right]\right) \\
& =x \operatorname{det}\left(A_{3}\right)-\left(1 \operatorname{det}\left(\left[\begin{array}{cc}
x & 1 \\
1 & x
\end{array}\right]\right)-1 \operatorname{det}\left(\left[\begin{array}{ll}
0 & 1 \\
0 & x
\end{array}\right]\right)+0 \operatorname{det}\left(\left[\begin{array}{ll}
0 & x \\
0 & 1
\end{array}\right]\right)\right) \\
& =x \operatorname{det}\left(A_{3}\right)-\operatorname{det}\left(A_{2}\right)
\end{aligned}
$$

vi) (Bonus problem : 5 Points) Let $A_{5}=\left[\begin{array}{lllll}x & 1 & 0 & 0 & 0 \\ 1 & x & 1 & 0 & 0 \\ 0 & 1 & x & 1 & 0 \\ 0 & 0 & 1 & x & 1 \\ 0 & 0 & 0 & 1 & x\end{array}\right]$. Show that $\operatorname{det}\left(A_{5}\right)=$ $x \operatorname{det}\left(A_{4}\right)-\operatorname{det}\left(A_{3}\right)$.

You obtain this formula by imitating the calculation we did above - expanding $\operatorname{det}\left(A_{5}\right)$ along the first row.

