MATH 3333
 Midterm I

September 20, 2007

Name:

I.D. no. :

- Calculators are not allowed. The problems are set so that you should not need calculators at all.
- Show as much work as possible. Answers without explanation will not receive any credit.
- Best of Luck.
i) (20 Points) Find all the values of a such that the following system has
a) no solution,
b) unique solution and
c) infinitely many solutions.

$$
\begin{aligned}
x+y & =4 \\
x+\left(a^{2}-15\right) y & =a
\end{aligned}
$$

The augmented matrix corresponding to the above linear system is given by

$$
\left(\begin{array}{cc|c}
1 & 1 & 4 \\
1 & a^{2}-15 & a
\end{array}\right)
$$

Applying the row operation $-\mathbf{r}_{1}+\mathbf{r}_{2} \rightarrow \mathbf{r}_{2}$ we get

$$
\left(\begin{array}{cc|c}
1 & 1 & 4 \\
0 & a^{2}-16 & a-4
\end{array}\right)
$$

Now there are 3 cases.
a) $\mathbf{a}=4:$ In this case the augmented matrix is

$$
\left(\begin{array}{ll|l}
1 & 1 & 4 \\
0 & 0 & 0
\end{array}\right)
$$

and the linear system of equations is $x+y=4$. Hence there are infinitely many solutions given by $x=r, y=4-r$, where r is any real number.
b) $\mathbf{a}=-4$: In this case the augmented matrix is

$$
\left(\begin{array}{cc|c}
1 & 1 & 4 \\
0 & 0 & -8
\end{array}\right)
$$

and the linear system of equations is $x+y=4,0=-8$. There are no solutions since the second condition can never be satisfied.
c) $\mathbf{a} \neq \pm 4$: In this case apply the row operation $\frac{1}{a^{2}-16} \mathbf{r}_{2} \rightarrow \mathbf{r}_{2}$ to get

$$
\left(\begin{array}{cc|c}
1 & 1 & 4 \\
0 & 1 & \frac{1}{a+4}
\end{array}\right)
$$

This gives us the linear system

$$
x+y=4, \quad y=\frac{1}{a+4}
$$

which has the unique solution $x=4-\frac{1}{a+4}, y=\frac{1}{a+4}$.
ii) (20 Points)
a) Let $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 0 & 1 & 1\end{array}\right]$. Find A^{-1}, if it exists. Record the row operations you perform, using the notation for elementary row operations.

$$
\left.\begin{array}{ll}
\left(\begin{array}{lll|lll}
1 & 1 & 1 & 1 & 0 & 0 \\
1 & 2 & 3 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right) & -\mathbf{r}_{1}+\mathbf{r}_{2} \rightarrow \mathbf{r}_{2} \\
\left(\begin{array}{lll|lll}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 2 & -1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right) & -\mathbf{r}_{2}+\mathbf{r}_{3} \rightarrow \mathbf{r}_{3} \\
\left(\begin{array}{lll|lll}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 2 & -1 & 1 & 0 \\
0 & 0 & -1 & 1 & -1 & 1
\end{array}\right) & -\mathbf{r}_{3} \rightarrow \mathbf{r}_{3} \\
\left(\begin{array}{lll|lll}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 2 & -1 & 1 & 0 \\
0 & 0 & 1 & -1 & 1 & -1
\end{array}\right) & -2 \mathbf{r}_{3}+\mathbf{r}_{2} \rightarrow \mathbf{r}_{2},-\mathbf{r}_{3}+\mathbf{r}_{1} \rightarrow \mathbf{r}_{1} \\
\left(\begin{array}{lll|lll}
1 & 1 & 0 & 2 & -1 & 1 \\
0 & 1 & 0 & 1 & -1 & 2 \\
0 & 0 & 1 & -1 & 1 & -1
\end{array}\right) & -\mathbf{r}_{2}+\mathbf{r}_{1} \rightarrow \mathbf{r}_{1} \\
\left(\begin{array}{lll|l|l}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & -1 \\
0 & 0 & 1 & -1 & 1
\end{array}\right. & -1
\end{array}\right) \quad .
$$

Hence we have

$$
A^{-1}=\left(\begin{array}{ccc}
1 & 0 & -1 \\
1 & -1 & 2 \\
-1 & 1 & -1
\end{array}\right)
$$

b) Find the solution to the following linear system $A \mathbf{x}=\mathbf{b}$ where A is as in part (a) above and $\mathbf{b}=\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]$.

Multiplying both sides of $A \mathbf{x}=\mathbf{b}$ by A^{-1} we get

$$
\mathbf{x}=A^{-1} \mathbf{b}=\left(\begin{array}{ccc}
1 & 0 & -1 \\
1 & -1 & 2 \\
-1 & 1 & -1
\end{array}\right)\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
1 \\
4 \\
-3
\end{array}\right)
$$

iii) (20 Points) Are the following two system of linear equations equivalent? Explain your answer.

$$
\begin{array}{rlrl}
4 x+3 y=1 & 5 x-2 y & =7 \\
-x+6 y=-7 & -2 x+y & =-3
\end{array}
$$

Two linear systems are said to be equivalent if they have the exact same set of solutions. Consider the first system $4 x+3 y=1,-x+6 y=-7$. Solving for x in the second equation gives us $x=6 y+7$. Substituting this in the first equation we get $4(6 y+7)+$ $3 y=1$. Solving for y we get $y=-1$ and hence $x=1$. So the unique solution to the first system is given by $x=1, y=-1$.
Consider the second system $5 x-2 y=7,-2 x+y=-3$. Solving for y in the second equation gives us $y=2 x-3$. Substituting this in the first equation we get $5 x-2(2 x-$ $3)=7$. Solving for x we get $x=1$ and hence $y=-1$. So the unique solution to the second system is given by $x=1, y=-1$.

Since both the systems have the unique solution $x=1, y=-1$ they are equivalent systems.
iv) (20 Points)
a) Give a geometric description of the matrix transformation given by $T_{1}(\mathbf{u})=A_{1} \mathbf{u}$ where $A_{1}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$.

Observe that $A_{1}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]=\left[\begin{array}{cc}\cos (\pi / 2) & \sin (\pi / 2) \\ -\sin (\pi / 2) & \cos (\pi / 2)\end{array}\right]$. We know that the matrix transformation corresponding to $\left[\begin{array}{cc}\cos (\theta) & \sin (\theta) \\ -\sin (\theta) & \cos (\theta)\end{array}\right]$ is a clockwise rotation by an angle θ. Hence T_{1} is a clockwise rotation by an angle $\pi / 2$.
b) The matrix transformation $T_{2}(\mathbf{u})=A_{2} \mathbf{u}$ where $A_{2}=\left[\begin{array}{cc}1 / \sqrt{2} & 1 / \sqrt{2} \\ -1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right]$ is a clockwise rotation. Determine the angle of rotation.

Setting $\left[\begin{array}{cc}1 / \sqrt{2} & 1 / \sqrt{2} \\ -1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right]=\left[\begin{array}{cc}\cos (\theta) & \sin (\theta) \\ -\sin (\theta) & \cos (\theta)\end{array}\right]$ we get $\cos (\theta)=1 / \sqrt{2}$ and $\sin (\theta)=$ $1 / \sqrt{2}$. This implies that $\theta=\pi / 4$. Hence T_{2} is a clockwise rotation by an angle $\pi / 4$.
c) Give a geometric description of the matrix transformation given by $T_{3}(\mathbf{u})=A_{3} \mathbf{u}$, where $A_{3}=A_{2} A_{1}$ with A_{1}, A_{2} as above.

The action of T_{3} is the same as first applying T_{1} and then applying T_{2}. This means that to any vector \mathbf{u} we first apply a clockwise rotation of an angle $\pi / 2$ and then we apply a clockwise rotation of an angle $\pi / 4$. Hence T_{3} is a clockwise rotation by an angle $3 \pi / 4$.
v) (20 Points) Determine whether the following statements are true or false. Explain your answers.
a) If A and B are $n \times n$ matrices then $\left(\left(A^{-1} B^{T}\right)^{-1}\right)^{T}=A^{T} B^{-1}$.

TRUE

$$
\left(\left(A^{-1} B^{T}\right)^{-1}\right)^{T}=\left(\left(B^{T}\right)^{-1} A\right)^{T}=A^{T}\left(\left(B^{T}\right)^{-1}\right)^{T}=A^{T} B^{-1}
$$

b) If A and B are 2×2 matrices then $(A+B)^{2}=A^{2}+2 A B+B^{2}$.

FALSE

$$
(A+B)^{2}=(A+B)(A+B)=A^{2}+A B+B A+B^{2} \neq A^{2}+2 A B+B^{2}
$$

if $A B \neq B A$.
c) If A and B are 2×2 invertible matrices, then $A+B$ is also an invertible matrix.

FALSE
Take $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and $B=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$. Then both A and B are invertible.
But $A+B$ is the zero matrix which is not invertible.
d) The matrix $A=\left[\begin{array}{cc}1 & 4 \\ 3 & 12\end{array}\right]$ is equivalent to $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$.

TRUE

Two matrices are equivalent if one can be obtained from the other by elementary row or column operations. Apply the row operation $-3 \mathbf{r}_{1}+\mathbf{r}_{2} \rightarrow \mathbf{r}_{2}$ to A to get $\left[\begin{array}{ll}1 & 4 \\ 0 & 0\end{array}\right]$. Now apply the column operation $-4 \mathbf{c}_{1}+\mathbf{c}_{2} \rightarrow \mathbf{c}_{2}$ to get $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$.

