Homework 8 : This homework is due on November 1.

i) State whether the following vectors are linearly independent. If not, express one vector as a linear combination of the rest.
a) $V=R_{3}, \quad \mathbf{v}_{1}=(1,1,0), \mathbf{v}_{2}=(0,3,4), \mathbf{v}_{3}=(2,0,4), \mathbf{v}_{4}=(1,1,1)$
b) $V=R_{3}, \quad \mathbf{v}_{1}=(2,-1,3), \mathbf{v}_{2}=(4,1,2)$
c) $V=M_{22}, \quad \mathbf{v}_{1}=\left[\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{ll}0 & 3 \\ 2 & 1\end{array}\right], \mathbf{v}_{4}=\left[\begin{array}{ll}4 & 6 \\ 8 & 6\end{array}\right]$
d) $V=M_{22}, \quad \mathbf{v}_{1}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{ll}3 & 1 \\ 2 & 1\end{array}\right], \mathbf{v}_{4}=\left[\begin{array}{ll}2 & 2 \\ 1 & 1\end{array}\right]$
e) $V=P_{2}, \quad \mathbf{v}_{1}=2 t^{2}+t+1, \mathbf{v}_{2}=3 t^{2}+t-5, \mathbf{v}_{3}=t+13$
ii) For what values of c are the vectors $(-1,0,-1),(2,1,2),(1,1, c)$ in R_{3} linearly dependant?
iii) Suppose that $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a linearly independent set of vectors in a vector space V. Prove that $T=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right\}$ is also linearly independent, where $\mathbf{w}_{1}=$ $\mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{3}, \mathbf{w}_{2}=\mathbf{v}_{2}+\mathbf{v}_{3}$ and $\mathbf{w}_{3}=\mathbf{v}_{3}$.
iv) Suppose that $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a linearly independent set of vectors in a vector space V. Is $T=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right\}$, where $\mathbf{w}_{1}=\mathbf{v}_{1}+\mathbf{v}_{2}, \mathbf{w}_{2}=\mathbf{v}_{2}-\mathbf{v}_{3}$ and $\mathbf{w}_{3}=\mathbf{v}_{1}+\mathbf{v}_{3}$, linearly dependent or linearly independent. Justify your answer.
v) Which of the following set of vectors are bases ?
a) $V=R^{3} \quad\left\{\left(\begin{array}{l}3 \\ 2 \\ 2\end{array}\right),\left(\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\right\}$
b) $V=P_{3} \quad\left\{t^{3}+t^{2}+1, t^{3}-1, t^{3}+t^{2}+t\right\}$
c) $V=R_{4} \quad\{(-2,4,6,4),(0,1,2,0),(-1,2,3,2),(-3,2,5,6),(-2,-1,0,4)\}$
vi) Find a basis for the subspace W of R_{4} spanned by the set of vectors $\{(1,1,0,-1),(0,1,2,1),(1,0,1,-1),(1,1,-6,-3),(-1,-5,1,0)\}$.
vii) Let W be the subspace of P_{3} spanned by $\left\{t^{3}+t^{2}-2 t+1, t^{2}+1, t^{3}-2 t, 2 t^{3}+3 t^{2}-4 t+3\right\}$. Find a basis for W.
viii) Find all values of a for which $\left\{\left(a^{2}, 0,1\right),(0, a, 2),(1,0,1)\right\}$ is a basis for R_{3}.

