Homework 7 : This homework is due on October 18.

- 1. In the following problems you are given a vector space V and a subset W. You have to answer whether W is a vector subspace of V. Explain your answer.
 - (a) $V = R^3$ and W is set of all vectors of the form $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ with 2a b + 5c = 0. (b) $V = R^3$ and W is set of all vectors of the form $\begin{pmatrix} a \\ 2 \\ c \end{pmatrix}$
 - (c) $V = M_{23}$ and W is the set of all matrices of the form $\begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix}$ such that b = 2a and e = f 3d.

(d) $V = M_{22}$ and W is the set of all matrices A such that $A\begin{pmatrix} 2\\3 \end{pmatrix} = 0$.

- (e) $V = R^n$ Let A be a $n \times n$ matrix. Let W be the set of vectors **x** such that $A\mathbf{x} \neq 0$.
- (f) $V = M_{nn}$ and W is the set of all upper triangular matrices.
- (g) $V = M_{nn}$ and W is the set of all non-singular matrices.
- (h) $V = C(-\infty, \infty)$ the vector space of all functions on $(-\infty, \infty)$ and W is the set of functions with f(0) = 0.
- (i) $V = C(-\infty, \infty)$ the vector space of all functions on $(-\infty, \infty)$ and W is the set of functions with f(0) = 5.
- 2. Does the set $S = \left\{ \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \right\}$ span M_{22} ?
- 3. Find the set of vectors spanning the solution space of $A\mathbf{x} = 0$, where $A = \begin{pmatrix} 1 & 1 & 2 & -1 \\ 2 & 3 & 6 & -2 \\ -2 & 1 & 2 & 2 \\ 0 & -2 & -4 & 0 \end{pmatrix}$.
- 4. Determine whether $p(t) = 2t^2 + 2t + 3$ belongs to the span of $p_1(t) = t^2 + 2t + 1$, $p_2(t) = t^2 + 3$ and $p_3(t) = t 1$.
- 5. Let $A_1 = \begin{pmatrix} 1 & -1 \\ 0 & 3 \end{pmatrix}$, $A_2 = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$, and $A_3 = \begin{pmatrix} 2 & 2 \\ -1 & 1 \end{pmatrix}$. Determine whether $A = \begin{pmatrix} 5 & 1 \\ -1 & 9 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$ belong to the span of A_1, A_2, A_3 .