This homework is due on **October** 11.

- 1. Show that if $A^n = 0$ for some positive integer n (such a matrix A is called a nilpotent matrix) then det(A) = 0.
- 2. Use Cramer's rule to solve the following linear system

$$2x_1 + 4x_2 + 6x_3 = 2, \quad x_1 + 2x_3 = 0, \quad 2x_1 + 3x_2 - x_3 = -5$$

3. Use Cramer's rule to solve the following linear system

- 4. Suppose V is the set of all 2×2 matrices $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ such that abcd = 0. Let the operation \oplus be the standard addition of matrices and the operation \odot be the standard scalar multiplication of matrices.
 - (a) Is V closed under addition ?
 - (b) Is V closed under scalar multiplication ?
 - (c) What is the zero vector in the set V?
 - (d) Does every matrix A in V have a negative that is in V? Explain.
 - (e) Is V a vector space ? Explain.

5. Let V be the set of 2×2 matrices $A = \begin{pmatrix} a & b \\ 2b & d \end{pmatrix}$. Let the operation \oplus be the standard addition of matrices and the operation \odot be the standard scalar multiplication of matrices.

- (a) Is V closed under addition ?
- (b) Is V closed under scalar multiplication ?
- (c) What is the zero vector in the set V?
- (d) Does every matrix A in V have a negative that is in V? Explain.
- (e) Is V a vector space ? Explain.
- 6. Let V be the set of all 2×1 matrices $\begin{pmatrix} x \\ y \end{pmatrix}$ such that $x \leq 0$ with the usual operations in \mathbb{R}^2 . Is V a vector space ? If not, state which of the properties in the definition of a vector space do not hold.
- 7. Let V be the set of real numbers; define $\mathbf{u} \oplus \mathbf{v} = \mathbf{u}\mathbf{v}$ (ordinary multiplication) and $c \odot \mathbf{u} = c + \mathbf{u}$. Is V a vector space ? If not, state which of the properties in the definition of a vector space do not hold.
- 8. Let V be the set of all positive real numbers; define $\mathbf{u} \oplus \mathbf{v} = \mathbf{u}\mathbf{v}$ (ordinary multiplication) and $c \odot \mathbf{u} = \mathbf{u}^c$. Is V a vector space ? If not, state which of the properties in the definition of a vector space do not hold.