1. Show that if $A^{n}=0$ for some positive integer n (such a matrix A is called a nilpotent matrix) then $\operatorname{det}(A)=0$.
2. Use Cramer's rule to solve the following linear system

$$
2 x_{1}+4 x_{2}+6 x_{3}=2, \quad x_{1}+2 x_{3}=0, \quad 2 x_{1}+3 x_{2}-x_{3}=-5
$$

3. Use Cramer's rule to solve the following linear system

$$
\left(\begin{array}{cccc}
1 & 2 & 0 & 1 \\
1 & 0 & -2 & 4 \\
-1 & 5 & 2 & 0 \\
0 & 2 & -1 & 3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
1 \\
-3 \\
4 \\
0
\end{array}\right)
$$

4. Suppose V is the set of all 2×2 matrices $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ such that $a b c d=0$. Let the operation \oplus be the standard addition of matrices and the operation \odot be the standard scalar multiplication of matrices.
(a) Is V closed under addition?
(b) Is V closed under scalar multiplication?
(c) What is the zero vector in the set V ?
(d) Does every matrix A in V have a negative that is in V ? Explain.
(e) Is V a vector space ? Explain.
5. Let V be the set of 2×2 matrices $A=\left(\begin{array}{cc}a & b \\ 2 b & d\end{array}\right)$. Let the operation \oplus be the standard addition of matrices and the operation \odot be the standard scalar multiplication of matrices.
(a) Is V closed under addition?
(b) Is V closed under scalar multiplication?
(c) What is the zero vector in the set V ?
(d) Does every matrix A in V have a negative that is in V ? Explain.
(e) Is V a vector space? Explain.
6. Let V be the set of all 2×1 matrices $\binom{x}{y}$ such that $x \leq 0$ with the usual operations in R^{2}. Is V a vector space? If not, state which of the properties in the definition of a vector space do not hold.
7. Let V be the set of real numbers; define $\mathbf{u} \oplus \mathbf{v}=\mathbf{u v}$ (ordinary multiplication) and $c \odot \mathbf{u}=c+\mathbf{u}$. Is V a vector space? If not, state which of the properties in the definition of a vector space do not hold.
8. Let V be the set of all positive real numbers; define $\mathbf{u} \oplus \mathbf{v}=\mathbf{u v}$ (ordinary multiplication) and $c \odot \mathbf{u}=\mathbf{u}^{c}$. Is V a vector space? If not, state which of the properties in the definition of a vector space do not hold.
