Homework 5 : This homework is due on October 4.

1. State whether the following statement is true or false and explain your answer : If $\operatorname{det}(A B)=0$ then either $\operatorname{det}(A)=0$ or $\operatorname{det}(B)=0$.
2. Suppose A is a $n \times n$ matrix and k is a non-zero real number. Show that $\operatorname{det}(k A)=k^{n} \operatorname{det}(A)$.
3. Suppose A is a $n \times n$ skew-symmetric matrix with n odd. Show that $\operatorname{det}(A)=0$.
4. Let $A=\left(\begin{array}{cccc}1 & 0 & 3 & 0 \\ 2 & 1 & -4 & -1 \\ 3 & 2 & 4 & 0 \\ 0 & 3 & -1 & 0\end{array}\right)$. Find the cofactors $A_{12}, A_{23}, A_{33}, A_{41}$.
5. Find all the values of t for which

$$
\operatorname{det}\left(\left(\begin{array}{ccc}
t-1 & 0 & 1 \\
-2 & t+2 & -1 \\
0 & 0 & t+1
\end{array}\right)\right)=0
$$

6. Let $A=\left(\begin{array}{ccc}2 & 1 & 3 \\ -1 & 2 & 0 \\ 3 & -2 & 1\end{array}\right)$. Find $\operatorname{adj} A$. Compute $\operatorname{det}(A)$. Verify that $A(\operatorname{adj} A)=\operatorname{det}(A) I_{3}$.
7. Let $A=\left(\begin{array}{cccc}2 & -1 & 0 & 3 \\ 1 & 2 & -2 & 4 \\ -1 & 1 & -3 & -2 \\ 0 & 2 & -1 & 5\end{array}\right)$. Find $\operatorname{det}(A)$ by expanding along a row or column. (You might want to simplify A first by using elementary row or column operations)
8. Using the method of adjoint matrix find the inverse of $A=\left(\begin{array}{lll}4 & 2 & 2 \\ 0 & 1 & 2 \\ 1 & 0 & 3\end{array}\right)$.
9. Suppose A is a $n \times n$ non-singular matrix. Show that $\operatorname{det}(\operatorname{adj} A)=\operatorname{det}(A)^{n-1}$.
