Homework 3 : This homework is due on September 20.

1. Find the reduced row echelon form of the given matrices. Record the row operations you perform using the notations for elementary row operations. $A=\left(\begin{array}{ccccc}-1 & 1 & -1 & 0 & 3 \\ -3 & 4 & 1 & 1 & 10 \\ 4 & -6 & -4 & -2 & -14\end{array}\right), B=$ $\left(\begin{array}{ccc}1 & 0 & -2 \\ -2 & 1 & 9 \\ 3 & 2 & 4\end{array}\right), C=\left(\begin{array}{ccc}1 & 1 & -1 \\ 3 & 4 & -1 \\ 5 & 6 & -3 \\ -2 & -2 & 2\end{array}\right), D=\left(\begin{array}{cc}\cos (\theta) & \sin (\theta) \\ -\sin (\theta) & \cos (\theta)\end{array}\right)$
2. Each of the given system is in row-echelon or reduced row-echelon form. Solve the system.
(a) $x-3 y+4 z+w=0, z-w=4, w=1$.
(b) $x+y-z+2 w=4, w=5$.
(c) $x+y=2, z+w=-3$.
3. Find all solutions, if any, of the following linear system using Gauss elimination method or GaussJordan elimination method.
(a) $x+y+2 z+3 w=13, x-2 y+z+w=8,3 x+y+z-w=1$
(b) $x+2 y+3 z=0, x+y+z=0, x+y+2 z=0$.
(c) Linear system with the augmented matrix $\left(\begin{array}{lll|l}1 & 2 & 1 & 7 \\ 2 & 0 & 1 & 4 \\ 1 & 0 & 2 & 5 \\ 1 & 2 & 3 & 11 \\ 2 & 1 & 4 & 12\end{array}\right)$
4. Find a 3×1 matrix \mathbf{x} with entries not all zero such that

$$
A \mathbf{x}=3 \mathbf{x} \text { where } A=\left(\begin{array}{ccc}
1 & 2 & -1 \\
1 & 0 & 1 \\
4 & -4 & 5
\end{array}\right)
$$

5. In the following linear system, determine all the values of a for the which the resulting system has (a) no solution; (b) a unique solution; (c) infinitely many solutions.

$$
x+y+z=2, \quad 2 x+3 y+2 z=5, \quad 2 x+3 y+\left(a^{2}-1\right) z=a+1 .
$$

6. Find the inverse of the following matrices, if they exist.

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 2 & 3 \\
1 & 2 & 4
\end{array}\right), B=\left(\begin{array}{cc}
1 & 3 \\
-2 & 6
\end{array}\right), C=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 3 & 1 & 2 \\
1 & 2 & -1 & 1 \\
5 & 9 & 1 & 6
\end{array}\right), D=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \text { with } a d-b c=1
$$

7. If $A^{-1}=\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & -1 & 1\end{array}\right)$, find A.
8. For each of the following matrices, find a matrix of the form $\left(\begin{array}{cc}I_{r} & O_{r, n-r} \\ O_{m-r, r} & O_{m-r, n-r}\end{array}\right)$:

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 2 \\
0 & 1 & 1
\end{array}\right), B=\left(\begin{array}{cccc}
1 & -2 & 3 & 1 \\
0 & -1 & 4 & 3 \\
1 & 0 & -2 & -1
\end{array}\right), C=\left(\begin{array}{ccc}
1 & -2 & 1 \\
2 & 3 & 2 \\
3 & 1 & 3
\end{array}\right)
$$

