Homework 2 : This homework is due on September 6.

1. Find the inverse (if possible) of
(a) $A=\left(\begin{array}{ll}1 & 3 \\ 5 & 2\end{array}\right), B=\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$ and $C=\left(\begin{array}{ll}2 & 3 \\ 4 & 6\end{array}\right)$
(b) $\left(A B^{T}\right)^{-1}$ with A, B as above.
2. The linear system $A C \mathbf{x}=\mathbf{b}$ is such that A and C are nonsingular with $A^{-1}=\left(\begin{array}{cc}2 & 1 \\ -1 & 1\end{array}\right), C^{-1}=$ $\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$ and $\mathbf{b}=\binom{2}{3}$. Find the solution \mathbf{x}.
3. Consider the linear system $A \mathbf{x}=\mathbf{b}$, where A is the matrix from Problem 1(a).
(a) Find a solution if $\mathbf{b}=\binom{2}{4}$.
(b) Find a solution if $\mathbf{b}=\binom{-1}{3}$.
4. Let A and B be symmetric matrices.
(a) Show that $A+B$ is symmetric.
(b) Show that $A B$ is symmetric if and only if $A B=B A$.
5. If A is a skew-symmetric matrix, what type of matrix is A^{T} ? Justify your answer.
6. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the matrix transformation defined by $f(\mathbf{x})=A \mathbf{x}$ where $A=\left(\begin{array}{ll}1 & 2 \\ 0 & 1 \\ 1 & 1\end{array}\right)$. Determine which of the given vectors is in the range of f.

$$
\mathbf{w}_{\mathbf{1}}=\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right), \mathbf{w}_{\mathbf{2}}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right), \mathbf{w}_{\mathbf{3}}=\left(\begin{array}{c}
1 \\
4 \\
2
\end{array}\right)
$$

7. Let $f(\mathbf{x})=A \mathbf{x}$ be a matrix transformation with $A=\left(\begin{array}{ccc}1 & 2 & 0 \\ 0 & 1 & -1\end{array}\right)$. Find two different vectors \mathbf{u} and \mathbf{v} such that $f(\mathbf{u})=\mathbf{w}$ and $f(\mathbf{v})=\mathbf{w}$ where $\mathbf{w}=\binom{0}{-1}$.
8. Give a geometric description of the matrix transformation $f(\mathbf{u})=A \mathbf{u}$ for the following matrices A.

$$
A_{1}=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right), A_{2}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), A_{3}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

9. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the matrix transformation defined by $f(\mathbf{u})=A \mathbf{u}$ with $A=\left(\begin{array}{cc}\cos (\phi) & \sin (\phi) \\ -\sin (\phi) & \cos (\phi)\end{array}\right)$. For $\phi=30$ degrees, f defines a clockwise rotation by angle of 30 degrees.
(a) If $T_{1}(\mathbf{u})=A^{2} \mathbf{u}$ describe the action of T_{1} on \mathbf{u}.
(b) If $T_{2}(\mathbf{u})=A^{-1} \mathbf{u}$ describe the action of T_{1} on \mathbf{u}.
(c) What is the smallest positive integer k for which $T(\mathbf{u})=A^{k} \mathbf{u}=\mathbf{u}$?
