This homework is due on November 29.

- 1. Find a basis for range of $L: \mathbb{R}^2 \to \mathbb{R}^2$ where $L(\begin{bmatrix} u_1 \\ u_2 \end{bmatrix}) = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$. Is $\begin{bmatrix} 3 \\ 6 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ in the range ? 2. Let $L: \mathbb{R}_2 \to \mathbb{R}_3$ where $L(\begin{bmatrix} u_1 & u_2 \end{bmatrix}) = \begin{bmatrix} u_1 & u_1 + u_2 & u_2 \end{bmatrix}$. Is L onto?
- 3. Find the dimension of range of $L: M_{23} \to M_{33}$ where $L(A) = \begin{bmatrix} 2 & -1 \\ 1 & 2 \\ 3 & 1 \end{bmatrix} A$.
- 4. Find a basis for range of $L: P_2 \to P_1$ where $L(at^2 + bt + c) = (a+b)t + (b-c)$.
- 5. Find a basis for range of $L: M_{22} \to M_{22}$ where $L(A) = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} A A \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$.
- 6. Find a basis for and dimension of the range of $L: \mathbb{R}^5 \to \mathbb{R}^4$ where $L\begin{pmatrix} u_1\\ u_2\\ u_3\\ u_4\\ u_5 \end{pmatrix} = \begin{bmatrix} 1 & 0 & -1 & 3 & -1\\ 1 & 0 & 0 & 2 & -1\\ 2 & 0 & -1 & 5 & -1\\ 0 & 0 & -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} u_1\\ u_2\\ u_3\\ u_4\\ u_5 \end{bmatrix}$

7. Let
$$L: R^4 \to R^3$$
 be defined by $L\begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{pmatrix} = \begin{bmatrix} 1 & 0 & 1 & 3 & 1 \\ 0 & 1 & 2 & 1 & 1 \\ -1 & -2 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix}$. Let S and T be the nat-
 $\begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}$

ural basis of R^4 and R^3 , and consider the ordered bases $S' = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix} \right\}$ and T' =

 $\left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\} \text{ for } R^4 \text{ and } R^3. \text{ Find the representation of } L \text{ w. r. t. } (a)S \text{ and } T; (b)S' \text{ and } T'.$

8. Let $L: \mathbb{R}^3 \to \mathbb{R}^3$ where $L\begin{pmatrix} 1\\0\\0 \end{pmatrix} = \begin{bmatrix} 1\\1\\0 \end{bmatrix}, L\begin{pmatrix} 0\\1\\0 \end{bmatrix} = \begin{bmatrix} 2\\0\\1 \end{bmatrix}, L\begin{pmatrix} 0\\0\\1 \end{bmatrix} = \begin{bmatrix} 1\\0\\1 \end{bmatrix}$. Find the representation of L

w. r. t. the natural basis of R^3 . Find $L\begin{pmatrix} 1\\ 2\\ 3 \end{bmatrix}$) by using the defined of L and also using the matrix.

- 9. Let $L: P_1 \to P_2$ be defined by L(p(t)) = tp(t) + p(0). Consider the ordered bases $S = \{t, 1\}$ and $S' = \{t+1, t-1\}$ of P_1 and $T = \{t^2, t, 1\}$ and $T' = \{t^2+1, t-1, t+1\}$ of P_2 . Find the representation of L with respect to S and T; and S' and T'. Find L(-3t-3) by using the definition of L and the two matrices obtained above.
- 10. Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, and let $L : M_{22} \to M_{22}$ be given by L(X) = AX XA for X in M_{22} . Let $S = \{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \}$ and $T = \{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \}$. Find the representation of L with respect to (a) S, (b) T, (c) S and T, (d) T and S.
- 11. Let $L: R_3 \to R_2$ have the representation w.r.t. natural basis of R_3 and R_2 the matrix $\begin{bmatrix} 1 & -1 & 2 \\ 2 & 1 & 3 \end{bmatrix}$. Find (a) $L(\begin{bmatrix} 1 & 2 & 3 \end{bmatrix})$, (b) $L(\begin{bmatrix} -1 & 2 & -1 \end{bmatrix})$, (c) $L(\begin{bmatrix} 0 & 1 & 2 \end{bmatrix})$, (d) $L(\begin{bmatrix} 0 & 1 & 0 \end{bmatrix})$ and (e) $L(\begin{bmatrix} 0 & 0 & 1 \end{bmatrix})$.