This homework is due on November 29.

1. Find a basis for range of $L: R^{2} \rightarrow R^{2}$ where $L\left(\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]\right)=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]$. Is $\left[\begin{array}{l}3 \\ 6\end{array}\right],\left[\begin{array}{l}2 \\ 3\end{array}\right]$ in the range ?
2. Let $L: R_{2} \rightarrow R_{3}$ where $L\left(\left[\begin{array}{ll}u_{1} & u_{2}\end{array}\right]\right)=\left[\begin{array}{lll}u_{1} & u_{1}+u_{2} & u_{2}\end{array}\right]$. Is L onto?
3. Find the dimension of range of $L: M_{23} \rightarrow M_{33}$ where $L(A)=\left[\begin{array}{cc}2 & -1 \\ 1 & 2 \\ 3 & 1\end{array}\right] A$.
4. Find a basis for range of $L: P_{2} \rightarrow P_{1}$ where $L\left(a t^{2}+b t+c\right)=(a+b) t+(b-c)$.
5. Find a basis for range of $L: M_{22} \rightarrow M_{22}$ where $L(A)=\left[\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right] A-A\left[\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right]$.
6. Find a basis for and dimension of the range of $L: R^{5} \rightarrow R^{4}$ where $L\left(\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3} \\ u_{4} \\ u_{5}\end{array}\right]\right)=\left[\begin{array}{ccccc}1 & 0 & -1 & 3 & -1 \\ 1 & 0 & 0 & 2 & -1 \\ 2 & 0 & -1 & 5 & -1 \\ 0 & 0 & -1 & 1 & 0\end{array}\right]\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3} \\ u_{4} \\ u_{5}\end{array}\right]$
7. Let $L: R^{4} \rightarrow R^{3}$ be defined by $L\left(\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3} \\ u_{4}\end{array}\right]\right)=\left[\begin{array}{ccccc}1 & 0 & 1 & 3 & 1 \\ 0 & 1 & 2 & 1 & 1 \\ -1 & -2 & 1 & 0 & 0\end{array}\right]\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3} \\ u_{4}\end{array}\right]$. Let S and T be the natural basis of R^{4} and R^{3}, and consider the ordered bases $S^{\prime}=\left\{\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right]\right\}$ and $T^{\prime}=$ $\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$ for R^{4} and R^{3}. Find the representation of L w. r. t. (a) S and $T ;(b) S^{\prime}$ and T^{\prime}.
8. Let $L: R^{3} \rightarrow R^{3}$ where $L\left(\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], L\left(\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right], L\left(\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$. Find the representation of L w. r. t. the natural basis of R^{3}. Find $L\left(\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\right)$ by using the defn of L and also using the matrix.
9. Let $L: P_{1} \rightarrow P_{2}$ be defined by $L(p(t))=t p(t)+p(0)$. Consider the ordered bases $S=\{t, 1\}$ and $S^{\prime}=\{t+1, t-1\}$ of P_{1} and $T=\left\{t^{2}, t, 1\right\}$ and $T^{\prime}=\left\{t^{2}+1, t-1, t+1\right\}$ of P_{2}. Find the representation of L with respect to S and T; and S^{\prime} and T^{\prime}. Find $L(-3 t-3)$ by using the definition of L and the two matrices obtained above.
10. Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$, and let $L: M_{22} \rightarrow M_{22}$ be given by $L(X)=A X-X A$ for X in M_{22}. Let $S=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$ and $T=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\right\}$. Find the representation of L with respect to (a) S, (b) T, (c) S and T, (d) T and S.
11. Let $L: R_{3} \rightarrow R_{2}$ have the representation w.r.t. natural basis of R_{3} and R_{2} the matrix $\left[\begin{array}{ccc}1 & -1 & 2 \\ 2 & 1 & 3\end{array}\right]$. Find (a) $L\left(\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]\right)$, (b) $L\left(\left[\begin{array}{lll}-1 & 2 & -1\end{array}\right]\right)$, (c) $L\left(\left[\begin{array}{lll}0 & 1 & 2\end{array}\right]\right)$, (d) $L\left(\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]\right)$ and (e) $L\left(\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]\right)$.
